
Laureate Online Education Internet and Multimedia Technology
© All right reserved, 2000-2008. The Internet and Multimedia Technology module, in all its
parts: syllabus, guidelines, lectures, discussion questions, technical notes, images, labs,
projects and any additional material is copyrighted by Laureate Online Education B.V.

Module: MSC MD (INTMMT) Seminar 2

Introduction to Computer graphics and Vector graphics

Introduction
One of the key attractions of any multimedia production is its visual appeal and
this is due to the graphics used. They may simply delineate the page or be an
integrated part of a presentation, they may still or moving, coloured or monotone
however they all add the most significant value to the whole. This seminar is
about graphics in general and the software and hardware that makes them
possible. We will leave video and animation to Seminar 3. So, for us, we take
graphics to mean the use of still images to convey meaning or add value in a
multimedia presentation. Graphics are a means of visual communication used
throughout mankind’s development, from the early cave paintings to modern
stereoscopic displays but what are we trying to communicate? This is of
fundamental importance to our choices for style, software or hardware used and
the design of the image. Look at a young child’s book. The images are bright and
clear using few colours because the child’s ability to understand subtle shading
and complex images is not fully developed. Now look at any Renaissance
painting with their vivid colours and complex settings. Finally, examine a
photograph from a fashion magazine. Each of these demands a different set of
tools and each sets a minimum level for the technology used to create them and
on which they are created. A child’s book will require limited use of colours
which should be bold and with no fussy detail. This can be achieved with a cheap
paint package on a relatively cheap machine. The Renaissance painting requires
more control and greater colour ranges which means we need to go up-market
for our tools. Lastly, the photograph in a fashion magazine requires the computer
and its software to match the original colours precisely and allow manipulation of
light and shade to create atmosphere. Here we will need to use expensive
packages. The previous examples look only at two dimensional images but we
can find similar examples in the 3-D world.
To appreciate the power of graphic presentation I would like to introduce you to
what Edwards Tufte described in his classical book “The Visual Display of
Quantitative Information” (Tufte, E.R 2001) and the website (Posters, Anon) as
the “Probably the best statistical graphic ever drawn”. This is a superb example
of what can be achieved through a graphic image detailing the timeline and the
events of napoleon invasion of Russia through the use a graphic presentation.

 1

During this seminar we will examine Vector and bit mapped graphics, 2-D and 3-
D approaches. However we will leave a more detailed discussion of Bitmaps and
how we can manipulate them using application software until Seminar 3. During
the module we will introduce you to freeware packages of multimedia related
applications and will assign to the same labs as only by playing with the tools will
you truly appreciate their capabilities and differences.

Computer graphics has a history almost as old as computers (Carlson 2003,
Shoaff 2000) but for many years graphics was a side show to text. In fact many
early graphics were made up of text for output to a printer. Perhaps the first
useful graphics were those used in line drawings for design purposes. These
used a technology which is rarely seen today. They were known as Vector
Graphics systems (Vector, Anon) and they drew line drawings directly onto the
video display, similar to a pen plotter, but unlike our modern screens which
require the image to be scanned first. Vector machines were limited in their use
of colours and could not cope very well with filled sectors. They were also very
expensive. The mass production of the television ensured that by the time the
personal computer generation came along all our screens were raster scan
devices.

Vertical
flyback

Horizontal
scan line

Figure 1. Unseen to us the electronics on a raster device is tracing across the screen.
We make a picture by switching the electronic gun beam on and off redrawing the
picture between 60 and 100 times per second. As you can see this must lead to
distortion.

 2

Today the words Vector Graphics have come to mean the production of images
from vectors stored in the computer while the images are displayed as physical
picture elements, (pixels). See Figure 1.

It is tempting to think that with modern technology we can produce images to
whatever fidelity we wish but let me sound a few words of caution. No matter
what we do to improve the software, we have chosen a technological path that is
limiting. The screens work by scanning consecutive lines one at a time and this
produces artefacts (we shall discuss this later). To overcome this we may use
more lines but this just changes the composition of the artefact. The fundamental
problem remains. Any increase in scan lines requires an increase in circuit
complexity and fundamental changes to the quality of the screen. This has
obvious cost implications. The use of high fidelity images implies more pixels and
more colours (Seminar 3 discusses colour) which will require more memory. Our
screens use only three phosphors to produce the whole range of colours for our
PC’s and as we shall see later, this sets a limit on the achievable range. The
networks have limited capacity and we have limited funding to pay for what there
is. This further restricts the style and accuracy of the graphics we can use in an
Internet based Multimedia presentation. This leads us to ask what we can do to
maximise the effectiveness of our graphics under a given set of circumstances.

Firstly, we must look at the types of graphics currently in use. We use simple
graphics to interpret data, sometimes 2-D and sometimes 3-D. These images are
generated by the data and designed specifically for display on a terminal. They
lack the complexity of 2-D images or the even greater complexity of a 3-D model.
Generally they use a limited subset of colours, (Typically eight) and are used for
charting results of data processing e.g. simple pie charts or histograms. They are
also used in Supervisory, Control and Data Acquisition systems (SCADA) in
public utilities where central control of distribution is required. This type of graphic
does not concern us in this module. This seminar will specifically examine the
use of Vector graphics, bit-mapped graphics and associated 3-D modelling
(which requires a perspective translation to be rendered onto a display).

As previously mentioned, Vector graphics is the use of a series of vectors and
attributes to store the image. This allows us to set the final image size
irrespective of the output technology. It is also a very condensed form of image
definition. Alternatively, bit-mapped graphics require us to store a pixel map of
the image. This pixel map defines the ideal resolution for the image since each
point in the map defines a point on a specific screen size. Increase the number of
pixels on the screen and the image will appear smaller (without corrections)
decrease the number of screen pixels and the image will appear larger. By now,
we should be able to see that each type has its uses, so let us examine them
more closely.

Another way to look at vector graphics is as though we were to trace the picture
and produce an outline. Each separate piece (such as the petal of a flower or the

 3

wheel of a car) is stored as a descriptor of the outline and its attributes e.g. the
colour to fill the outlined area with. This works well for simple drawings but as the
image complexity increases so does the number of vectors. Also as colour
changes become more subtle it is difficult to delimit the areas accurately. We can
see that Vector graphics is good for the creation of cartoons and poster art but
lacks discrimination for detailed work.

With a bit-mapped (for bit mapped you can substitute pixel map if you prefer but
strictly speaking they are not the same. Pixel is short for Picture – Element and
should be reserved for the final output.), image we define a colour value for each
element so that it is harder to determine an outline of a given shape. While vector
graphics retains objects and can manipulate them separately, the bitmap
graphics regards the entire picture as one single object. In figure 2, you can see
an endoscope image of a developing ulcer. Would you be able to define the
ulcer’s limits for storage as a vector graphic? Even non-intelligent automatic
systems will fail since there is no continuous path of a single colour present. Bit
maps are suited to detailed images where there are continuous tonal changes
such as photographs or complex scenes.

Figure 2. This is an enhanced Endoscopic view of an Ulcer. You should just be able to
see different shades of reds which form an irregular pattern. The yellow arrow points to
one such area.

Modern bit maps are usually stored with 24 bits for colour and an eight bit alpha
channel. The 24 colour bits are separated into 8 bits for each component colour
(red, green and blue) and the alpha channel is used for special effects such as
shadows or translucency to be applied to that pixel.

Since the two types of graphic are so different it should not be a surprise to find
that the tools used to create them differ as do the file formats used to store them.

Drawing packages are often oriented towards the production of Vector graphics
whereas Paint packages usually produce bitmapped images. When you draw,
you are creating an image from lines so that the source material for a vector

 4

system is implicit. When you use a paint package then you are offered a
selection of brushes which produce different effects. In fact, Microsoft Windows
uses the concept of brushes when producing graphical output, e.g. a window. Of
course there is nothing to stop us mixing the vector graphic with a bitmapped
graphic. This is often done when we wish the focus to be cartoon like or
posterised against a realistic background. Packages accomplish this using layers
to allow easy editing. You can imagine a fish swimming against a coral reef
background. The background contains a lot of detail and the designer decides to
use a bitmap which is static and requires no manipulation whereas the fish is the
focus and star of a cartoon and is dynamically moving. Manipulating vector
objects is a simple mathematical operation. Layers allow the designer to move
the fish about in the picture without having to re-edit the background every time.

Paint and drawing packages often allow saving to file in a variety of formats to
allow user choice and to facilitate compatibility with other packages. (Formats,
Anon)

There are many ways to save images in files. Fundamentally, what do you need?
We may think that a two dimensional array of storage locations would suffice for
a bitmap image providing we can read the locations sequentially and put each
locations value on the screen in order. Unfortunately we need a few other items
such as the length of the file, its name and the order the elements are in. These
items go in the file header. In turn, the structure of the header may limit the size
of the file. Several file formats incorporate compression schemes and this must
be recognisable to the imaging system. This is why your system may read one
type of bitmap and not another. Information in the header tells your system that it
requires certain facilities in order to be read; if they are not available then often a
downloadable plug-in can be found. File systems such as the Tagged Image File
Format (TIFF) were designed to be open and accessible to all but the header
was extensive. With the TIFF format you could describe keywords which
effectively ensured privacy to a special interest group or header offsets which
allowed mixing of images in the one file. Tiff is a very flexible file format but
designing readers for it can be complex. Simpler systems such as GIF provide
compression but limit the number of colours. Since GIF has a built-in proprietary
compression scheme its days are probably numbered. Many new file formats are
predicated on the assumption that the device producing them is digital e.g. a
digital camera, video or scanner.
In the next two sections we will take a closer look a how Vector and Bitmapped
graphics work.

Vector Graphics
Vectors are the basic building blocks for a wide variety of graphical work. From
the simple two dimensional posterised work to the complexities of 3D modelling
epitomised by computer games and simulators but how do they work? Vectors

 5

are simply numbers which describe a relationship between items. For our
purposes, they describe how to reach locations in space. The following is a brief
review for those of us who missed Vectors in our mathematics classes.

We can begin by imagining a grid made up of small squares where each square
represents a pixel (see figures 3) then if we want to reach a particular point on
the grid we simply count the appropriate number of squares in the x and y
directions. For example if we wish to move 2 squares in the x direction and two
squares in the y direction from the origin we arrive at the yellow square in figure
3a. In mathematics we write, (2,2) or generally (x,y). In some texts, especially
those on computer graphics from North America, you may see it written as [2,2].
Now if we want to move we simply need to use a vector to say how far and in
which direction. For example we could draw the red vertical line in figure 3a up
to t (2,4).
To do this we need simply say Draw 0 squares in x and +2 squares in y from the
current position or (2,2) + (0,2) = (2,4). Imagine now a simple machine to which
we can give some instructions as follows:

 Reset to origin

Colour =Red
 Brush = Pencil
 Use Incremental
 Move (2,2) /* Without drawing */
 Draw (0,2) /* Move and draw */

In the above pseudo-code we have told the machine to; start at the origin, select
a colour to use, select a style of brush (in this case we want to draw a narrow
line) move two squares in the x and two squares in y direction, finally draw a line
from (2,2) which is 0 in the x direction and 2 in the y direction. See figure 3a. Can
you see how this could be extended to draw any straight edged object in two
dimensions? Below are the instructions to draw a rectangle.

Reset to origin

Colour =Red
 Brush = Pencil
 Use incremental
 Move (2,2)
 Draw (0,2)
 Draw (2,0)
 Draw (0,-2)
 Draw (-2, 0)
See figure 3b

 6

y

x

x

0

Figure 3a Figure 3b

Notice that the above examples are using relative instructions. We could have
used absolute positions, e.g.

 Reset to origin

Colour =Red
 Brush = Pencil
 Use absolute
 Move (2,2)
 Draw (2,4)
 Draw (4,4)
 Draw (4,2)
 Draw (2,2)

It has the same effect but without those confusing minus signs. This simplistic
system ignores some complex issues.
We are using a coordinate system which starts at (0,0) in the lower left. This is a
natural way to think and draw for humans but our common raster scan display
draws from the top left to the bottom right. Thus the data presented to it from our
memory is read from the lowest array locations first to feed the top right position.
We must convert our coordinate system to accommodate this (most graphics
packages now do this automatically.) or we must think with (0,0) at the top right
and a y axis increasing downwards. For some items this would make no
difference but see figure 4.

 7

0

y
2-D Coordinate

x

0

y

Display
x

Figure 4 A yellow box at (2,2), (4,2), (4,4), (2,4) does not change but
for the pink box …..?

So far we have dealt with integers but that is limited. We can consider a screen
to have 640 x 480 pixels and our drawing to have a coordinate system to match
but what happens when we change resolution or we wish to have an easily
scaled description? We find that we need awkward multipliers. It would be much
better if we used a system based on real numbers between 0 and 1. Then we
can select any point in between and scale up as required. Another problem with
integers occurs because we assign a single colour to the whole area of a pixel.
Consider figure xx. There we can see a horizontal line which looks perfectly
satisfactory and a vertical line that also looks correct but a 45 line that looks
broken and an even worse line at 20 degrees. We have a problem which is
described as aliasing due to under sampling of the image. E.g. It would look
better if we increased the number of pixels in each direction. We improve this
picture by selecting adjacent colours to blend with the line. Our eyes then
integrate the sum of these shades to produce the impression of a smooth line.
We avoid these problems in our initial drawings by using real numbers with their
much larger range. There is then a question of where is the point that represents
pixel (0,0)? Surely not at (0,0) in our real number system. It will be at (0 + ½ x , 0
+ ½ y). That is, the centre of the pixel. This will allow us to accurately pick our
anti-aliasing values from those around the required pixel centre. These problems
occur for all shapes and in figure 5 you can see the effects that occur and must
be compensated for when drawing a simple circle. Of course the resolution is
greatly lowered

 8

Figure 5. Distorted circle at low resolution. Note the effects on the top and sides. This circle is
made from rectangles (a screen pixel is rectangular) and can only follow the underlying true circle
to an approximation.

If we can imagine a point, then we can imagine another point and between them
we can imagine a line. If we can imagine a line, then we can imagine another line
joining it and yet another. If the lines connect, we can imagine a small surface
patch, and from that any feasible planar shape. This is the basis of Euclidean
geometry. Shapes can be made from lines or from curves which could be
approximated by many small lines. Therefore, we can save our images as a set
of point descriptions and a connectivity list. There is another way. We could
describe our curves (actually a line is a curve with one direction) by mathematical
formulae and save considerably on the storage. Complex curves require tools
which can be manipulated by humans to produce what is called a ‘fair’ curve e.g.
it is ‘smooth’. The most common example is the Bezier tool so often included in
drawing and paint packages. A Bezier curve is drawn by controlling basis
functions which describe the curve. By manipulating the parameters to the curve
it is possible to make the curve bend in the desired manner. In order to
experience the Bezier curve you can experiment with it through a Java interactive
program (Bezier, Anon).

The actual mathematics is beyond the scope of this seminar however it is
instructive to see how parametric descriptions help us produce curves. Let us
start with a straight line. In this example we will use a 3D line. The only difference
we need concern ourselves with for the moment is the presence of an extra
coordinate value which describes the third axis (the z-axis).
A line is defined as a set of points (x,y,z). See figure 6 and we want an efficient
way to describe them.

 9

y

z

B = (4,4,6)

A = (1,2,2)

x

Figure 6. A 3 - dimensional line as a set of points described by their endpoints.

We use a parametric form. In this form we can cause a line (or a curve) to be
drawn point by point in a controlled manner. We are used to the formula for a
straight line ; y = mx + c. In a similar way we can write ;

x = axu + bx
y = ayu + by
z = azu + bz

Here ‘u’ is the parameter.

We can rearrange the above and insert the ‘i’ designators to give us;

axu = xi - bx
ayu = yi - by
azu = zi - bz

 10

Notice how the parameter ‘u’ is involved in finding all three coordinates; if we
change ‘u’ we change the value for all three coordinates.

We would like our parameter to describe the curve from start to finish. So we set
it equal to zero at the start and 1 at the end.

Substitute
 i = u = 0 i = u = 1

 bx = x0 ax = x1 - x0 /* Because ax1 = xi – bx
 by = y0 ay = y1 - y0 and bx = x0, and the same
 bz = z0 az = z1 - z0 for the rest */

We have isolated the coefficients a and b. So we can substitute them to arrive at
a purely parametric form which relies only on our substituting for u a value
between 0 and 1.

x = (x1 - x0)u + x0
 y = (y1 - y0)u + y0
 z = (z1 - z0)u + z0

We can describe more complex curves in this manner using quadratics, cubics
and higher forms. Enough of the mathematics!
But if you are keen on learning the mathematical manipulations that drive all
these translation, scaling and shearing take a look at “Transformations in 3D”
(Moldhave 2000).

We have our vectors and our shapes what remains in a two dimensional image is
to fill the shapes. In a piece of art work we carefully manipulate the internal area
of a shape to produce a more realistic form or a more pleasing form brush stroke
by brushstroke. Our computer package can do this for us in many cases quite
automatically. We can define a brush to be thick or thin and to apply a particular
colour just as in real life but our computer can define a dashed brush or tartan or
multi-coloured. We can set an area to fill with shades which vary from corner to
corner (a gradient fill). We can also define actions across the whole subset of the
image. The usual ones are; translations rotations, shearing and scaling. We do
this by dragging the object or selecting a point to act upon.

We have quietly introduced the idea of three dimensional coordinate systems
whilst looking at 2-D images but is that all there is to it? Of course not. Let us
take a closer look.

 11

The obvious difference is we define coordinates as triples (x y z) and objects as a
series of triples. See figure

 Y

x

z

 Figure 7. Notice the axis can have negative values. The box inside the yellow area is defined by
eight triples, (xyz) just as the yellow box is surrounding it.

Our objects in 3-D are models of the real world and are made from simple
primitives such as spheres and boxes which are developed into more complex
forms. If we look more closely at our primitives we see simpler shapes; a box has
six sides, each side consists of two triangles. We consider our objects to be
made from surface patches of varying complexity but at the end of the day we
need to put them onto the screen. Let us take a look at the process.

Our models are contained in a database but to get them to the screen requires
certain actions to be carried out. We can only show you one possible sequence
of events but there are others. In what follows use figure 8 as your guide. We
begin with a world coordinate system in which we consider our object to exist and
our first job is to transform that to our modelling system. Of all the objects in our
world we are only interested in those within our field of view so we can throw
away those outside it. This is the trivial accept / reject stage (After all, why
process something we have no interest in?). Our next task is to apply a
mathematical model of lighting to the objects. In this case the Gouraud model.
This is achieved by setting a value for the vertices of each patch and
interpolating between the edges to obtain values for each pixel. This can be
done later in systems such as those using Ray Tracing. Now we must make the
final transformation from 3D to 2D and apply perspective for our view of the

 12

scene to be realistic. Next we clip any partial objects to size. At this point we
have only those objects and parts of objects that are visible on the screen. Now
we map to the Viewport (on the Pc it is known as a window) on the screen. At
last, the process which converts our planar patches to a series of sequential line
elements can take place. This is known as rasterisation. Finally we send the
individual pixels to the display.

Db
Traversal

Modelling
Transformation

Trivial
Accept/Reject

Lighting

Rasterization

Viewing
Transformation

Clipping

Display Map to 3D
Viewport

Figure 8. A typical pipeline for Gouraud lighting.

You will read about rendering engines that perform the lighting functions. Modern
engines are capable of being modified by knowledgeable programmers to suite
the mood desired. One such engine is the DirectX 9 application from Microsoft.
For most multimedia work where super realism is not a priority we do not need
such knowledge and we accept what is available from the 3D modelling package
we are using. If you want to experiment with 3D graphics, you can down load
many trial packages. One good clone of the commercial package, 3DSMax, is
GMAX from Discrete.

Another approach to modelling, the Procedural Modelling makes use of
algorithms rather then equations. This approach had gained a lot of attention
since the introduction of the Fractals, which could be defined as an image in self
similarity reign. Thus every section of the image is similar to the total image. A

 13

known example is clouds, where a portion of a cloud looks like a full cloud, and a
portion of that portion looks again like a cloud and so ad infinitum. Another
example can be found in Indian temples were a part of a temple has the same
design of the whole temple (Jackson, n.d.).
For a definition and examples of fractals, see (Lorenz 2003)

See the Tools section at the end of this lecture for programs that implement
these ideas.

Links and References

Bezier, Anon An interactive Java Bezier applet [Internet]

http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Bezi
er/bezier.html,
(Accessed: 15th September 2008)

Carlson W.E. (2003)
CGI Historical Timeline [Internet]
http://accad.osu.edu/~waynec/history/timeline.html
http://web.archive.org/web/20070519144440/accad.osu.edu/~waynec/histor
y/timeline.html
 A timeline history of graphics
(Accessed: 1st May 2007)

Formats, Anon [Internet]
 http://www.why-not.com/articles/formats.htm#GIF,
A look at graphics file formats and a link to the file format specifications
 http://www.dcs.ed.ac.uk/home/mxr/gfx/2d-hi.html
(Accessed: 15th September 2008)

Jackson W.J. (n.d.) Hindu temples and fractals [Internet]
 http://liberalarts.iupui.edu/~wijackso/tempfrac/
(Accessed: 15th September 2008)

Lorenz W.E. (2003) Fractals and Fractal Architecture [Internet]
http://www.iemar.tuwien.ac.at/fractal_architecture/subpages/01Introduction.
html (Accessed: 15th September 2008)
A definition, math and examples of fractals.

Molhave T. (2000) Transformations in 3D [Internet]

http://home10.inet.tele.dk/moelhave/tutors/3d/transformations/transformatio
ns.html
(Accessed: 15th September 2008)

 14

http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Bezier/bezier.html
http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Bezier/bezier.html
http://accad.osu.edu/%7Ewaynec/history/timeline.html
http://web.archive.org/web/20070519144440/accad.osu.edu/%7Ewaynec/history/timeline.html
http://web.archive.org/web/20070519144440/accad.osu.edu/%7Ewaynec/history/timeline.html
http://www.why-not.com/articles/formats.htm#GIF
http://www.dcs.ed.ac.uk/home/mxr/gfx/2d-hi.html
http://liberalarts.iupui.edu/%7Ewijackso/tempfrac/
http://www.iemar.tuwien.ac.at/fractal_architecture/subpages/01Introduction.html
http://www.iemar.tuwien.ac.at/fractal_architecture/subpages/01Introduction.html
http://home10.inet.tele.dk/moelhave/tutors/3d/transformations/transformations.html
http://home10.inet.tele.dk/moelhave/tutors/3d/transformations/transformations.html

Posters, Anon [Internet]
http://www.edwardtufte.com/tufte/posters . This site contains the description
of the image and what it conveys. For a better sized display see,
http://www.edwardtufte.com/tufte/minard
(Accessed: 15th September 2008)

Shoaff W. (2000), A short history of computer graphics [Internet]
http://www.cs.fit.edu/~wds/classes/graphics/History/history/history.html
(Accessed: 15th September 2008)

Tufte, E. R. (2001),
The Visual Display of Quantitative Information (2nd edition), Graphic Press

Vector, Anon [Internet] http://www.cca.org/vector/

 A discussion of vector graphics systems
(Accessed: 15th September 2008)

Tools:
Vector Drawing 2D:
 Commercial: Free hand, Illustrator
 Freeware:
 Sodipodi: http://www.sodipodi.com/index.php3?section=home/about
 InkSpace: http://www.inkscape.org/ .
 This is a spin off Sodipodi and a SVG editor. We will discuss SVG in another
 seminar.

3D Graphics:

A selection of Graphics books is available at:
http://www.ecs.soton.ac.uk/~msn/book/books.html

Two well known text books on Mathematical Computer Graphics are: Foley,
J.D. et al (1995) Computer Graphics: Principles and Practice in C (2nd

Edition), Addison-Welsley Heran, D. and Baker, M. P.(2003), , Computer
Graphics with OpenGL (3rd Edition), Prentice Hall

 Commercial: 3Dmax
 Freeware:
 Art of Illusion: http://www.artofillusion.org/
 Gmax: http://www.turbosquid.com/gmax
 Blender: http://www.blender3d.com/

 Fractals 2D: A superb fractals program for Windows and DOS (the DOS
 version is more extensive!):
 http://spanky.triumf.ca/www/fractint/fractint.html

 Fractals 3D: MojoWorld Transporter
 http://www.pandromeda.com/page/products/transporter.html

 15

http://www.edwardtufte.com/tufte/posters
http://www.edwardtufte.com/tufte/minard
http://www.cs.fit.edu/%7Ewds/classes/graphics/History/history/history.html
http://www.cca.org/vector/
http://www.sodipodi.com/index.php3?section=home/about
http://www.inkscape.org/
http://www.ecs.soton.ac.uk/%7Emsn/book/books.html
http://www.artofillusion.org/
http://www.turbosquid.com/gmax
http://www.blender3d.com/
http://spanky.triumf.ca/www/fractint/fractint.html
http://www.pandromeda.com/page/products/transporter.html
http://www.pandromeda.com/page/products/transporter.html

 16

Bitmap 2D:
 Are listed in next week seminar.

	Introduction to Computer graphics and Vector graphics

