Updates on clarification can be found on: 
https://userpages.umbc.edu/~chang/cs341.f17/projects/proj3.shtml

Addenda
· [Wed 10/18 11:30am] Posted test programs and submission instructions. Added recommended incremental development schedule to Implementation Notes.
· [Tue 10/17 10:50am] Made nicer figures.
· [Tue 10/17 09:20am] Added remarks on rebalance() in Implementation Notes section.
Corrections/clarifications in orange below.

Objectives
The objective of this programming assignment is to have you practice using recursion in your programs and to familiarize you with the binary search tree data structure.

Introduction
If you never learned about AVL Trees and Red-Black Trees, would you be able to design a balanced binary search tree? AVL Trees and Red-Black Trees are rather intricate data structures. All the cases fit together rather nicely and the rotations work just right. Sometimes we are awed by such data structures, we tend to think that there is no way we would even begin to suspect that such a data structure is possible, let alone design one ourselves.
In this project we will experiment with binary search trees and, hopefully, convince you that maybe you could have been the one to design the first balanced binary search trees, if only you were born 60 or 70 years earlier.
Now let's think about AVL Trees and Red Black Trees for a moment. Basically there are two steps in the algorithm. First, there is some way to determine that the tree is "unbalanced". In AVL Trees, this is when the height of the left and right subtrees differ by more than 1. In Red-Black trees, the coloring requirements might be messed up. In the second step, we rearrange the top few levels of the subtree that is unbalanced. Note that in both AVL Trees and Red-Black Trees, only the top few levels of the subtree is rearranged, no matter if the tree has height 10 or height 100.
Now let us devise a very simple scheme to determine if a subtree is unbalanced. Let us say that a subtree is unbalanced if the height of the subtree is more than 2 log m where m is the number of nodes in that subtree. For example, consider the subtree depicted below:
[image: https://userpages.umbc.edu/~chang/cs341.f17/projects/proj3files/proj3fig1.jpg]
The numbers in green are the sizes of the subtrees — the number of nodes in that subtree. The numbers in red are the heights of the subtrees. For example, the node with key 34 has height 19 and size 739. Note that since 2 log(739) ≈ 19.058, that subtree is not "unbalanced". On the other hand, the root of this tree is unbalanced because 2 log(922) ≈ 19.697 and the tree has height 20. You can verify for yourself that the other nodes in the tree are not unbalanced.
So, what can we do? Well, we can rearrange the tree and make 51 the new root (see figure below), but that doesn't help because the tree still has height 20.
[image: https://userpages.umbc.edu/~chang/cs341.f17/projects/proj3files/proj3fig2.jpg]
On the other hand, if we made 34 the new root, we could rearrange the tree and get a new tree with height 19. Then, the tree would be balanced according to our current definition of "balanced".
[image: https://userpages.umbc.edu/~chang/cs341.f17/projects/proj3files/proj3fig3.jpg]
But how would we know to pick 34 as the new root? Easy, we try "everything". Starting with the original tree that has 70 as the root, we can perform a truncated inorder walk up to depth 3. (In our definition of depth, the root 70 has depth 0, its children have depth 1, ... so a node like 27 has depth 3.) The truncated inorder walk will give us a list of subtrees and "singleton" nodes, which we can place in an array:
[image: https://userpages.umbc.edu/~chang/cs341.f17/projects/proj3files/proj3fig4.jpg]
Note that we want to include the empty tree that is the left child of 135 in the array. This allows us to claim that the singleton nodes are always in odd indexed positions in the array and that the subtrees are at even indices. To transform this array of subtrees and singleton nodes back into a binary search tree, we can use any singleton node as the new root. For example, if we picked 93 to be the new root, then its left subtree will include the keys from T1, 23, T2, 34, T3, 51, T4, 70, T5 and its right subtree will include T6, 110, T7, 135, T8. To find the best root, we try all the singleton nodes as potential roots of the new tree and pick one that will give us the shortest tree.
But how do we determine the height of the shortest tree that has say 34 as the root? Well, in order to have a shortest tree, the left subtree must be arranged optimally and the right subtree must also be arranged optimally. How do we do that? recursively. If we picked 34 to be the new root, there is only one way to arrange T1, 23, T2 into a binary search tree: 23 must be the root of the left subtree. The right subtree of 34 would include T3, 51, T4, 70, T5, 93, T6, 110, T7, 135, T8. This time, there are many ways to construct a subtree. If we reconstructed the right subtree optimally, then we would discover that it is best to pick 70 as the root of the right subtree. We would have discovered this recursively, by trying all of the singleton nodes, 51, 70, 93, 110 and 135, as roots of the right subtree and figuring out that 70 gives the shortest right subtree.
Ordinarily, such an exhaustive search for the optimal root will result in an exponential time algorithm. However, we will only take apart our binary search tree down to a fixed depth. If we limit ourselves to depth 3, then there can be at most 16 items in the array of subtrees and singleton nodes. Exhaustive search on 16 items will be constant time. (In CMSC 441 Algorithms, you will study dynamic programming which can be used to reduce the running time of this step.)
So here is our strategy: we will store at each node of the binary search tree, the size and height of the subtree rooted at that node. Whenever we add an item to or remove an item from the binary search tree, we examine all of the nodes on the path from the root to where a node was inserted or deleted. At those nodes, we check that the height is no more than 2 log(size). This should be checked when we return from the recursive calls to insert or delete. Note that in delete, we consider the path from the root to the node that was actually removed from the tree. This node might not hold the key that was deleted, because in the case where we want to remove a node that has two children, we actually remove the node that has the highest key in the left subtree. It is this node in the left subtree that has been "removed" from the tree. Checking and updating the height and size at each node on this path should take constant time per node examined.
Now, suppose we find an unbalanced node. Then we break apart the subtree rooted at that node down 3 levels and store the singleton nodes and subtrees in an array. Finally, we reconstruct the subtree by exhaustively and recursively determine the best singleton node to have as the root of the rearranged subtree.
Will this work? Are we guaranteed to have a tree with 2 log n height? We don't know because:
1. We don't know that reconstructing tree in this way will reduce the height of the tree. It might be the case that we reconstruct the tree optimally and the height remains the same. In this situation we say that the rebalance has failed.
2. We also don't know that reducing the height will necessarily produce a tree with height less than 2 log m.
(BTW, this is why AVL Trees and Red-Black Trees need proofs to show that their rebalancing scheme works.)
Even though we do not have a guarantee that our rebalancing scheme works, we can still try the algorithm experimentally and see how well it works. Also, there is no particular reason to use 2 log m as definition of unbalanced. Maybe a different factor other than 2 would work better. Again, there's no particular reason for us to break apart a subtree only down to depth 3. We can try different depths to see what works better in terms of running times and in terms of getting a shorter binary search tree. In this project, we will also tune these two parameters.

Assignment
Note: Running time is one of the most important considerations in the implementation of a data structure. Programs that produce the desired output but exceed the required running times are considered wrong implementations and will receive substantial deductions during grading.
Your assignment is to implement the Experimental BST described above. You may start with a binary search tree class from the textbook or given by your instructor, if you prefer. You may also design your own. Each option has advantages and disadvantages. A primary objective of this programming assignment is to have you use recursion. So, one component of grading will evaluate how elegantly you employ recursion to implement this data structure. (Yes, you are being graded on aesthetics!)
Since you will choose the design of the class definitions, no header files will be distributed with this project. Instead, the requirements are:
· The name of the class must be ExpBST.
· The header file must be named ExpBST.h (case sensitive).
· A client program that includes ExpBST.h should compile correctly without including any other header files.
· Your ExpBST class must have the member functions with the specified signatures indicated below.
· The implementation of your member functions and any supporting functions must be placed in a single file named ExpBST.cpp.
· No STL classes may be used in this programming project.
In order to implement ExpBST efficiently, your data structure must be able to determine the size and height of a subtree in constant time. You must have data members for the height and size of a subtree in the class representing the root of a subtree of a ExpBST. The height and size data members must be updated whenever the height or size of that subtree changes. The update must not affect the asymptotic running time of insert, delete and search. These must still run in time proportional to the height of the tree.
To keep things simple for this project, we will just store int values in ExpBST. Although, well-written code should allow you to easily change the type of data stored in the data structure.
Here are the member functions you must implement in your ExpBST class. (You will need to implement others for your own coding needs.)
1. A default constructor with the signature
2.    ExpBST::ExpBST() ;
We would usually use the next constructor to create an ExpBST object. However, a class without a default constructor can be problematic, so we will include a default constructor.
3. A constructor with the signature
4.    ExpBST::ExpBST(int depth, int minHeight, float factor) ;
Here depth specifies the maximum depth taken by the truncated inorder walk when we take apart an ExpBST during the rebalancing operation. Recall that the root has depth 0, the children of the root have depth 1. The parameter minHeightindicates the height of the shortest tree that will be considered for rebalancing. For example, if minHeight is 5, then we will not rebalance subtrees of height 4, 3, 2, 1 or 0. Finally, factor is the multiple of log m we use to define when a subtree is unbalanced. For example, if factor is 2.0 then a subtree with m nodes and height greater than 2.0 log m is unbalanced. Note that factor is allowed to have fractional values.
For simplicity, you may store these values in static data members. This does mean that a program can only have ExpBST trees of the same type. Otherwise, these values would have to be associated with the root of the tree, and the root would have to be distinguished from other nodes in the tree.
5. Your ExpBST class must also have the following functions that return the values passed to the constructor above.
6.    int getMaxRebalanceDepth() const  ;  
7.    int getMinRebalanceHeight() const ;
8.    float getRebalanceFactor() const ;
9. A copy constructor with the signature
10.    ExpBST::ExpBST(const ExpBST& other) ;
The copy constructor must make a deep copy and create a new object that has its own allocated memory.
11. A destructor with the signature
12.    ExpBST::~ExpBST() ;
The destructor must completely free all memory allocated for the object. (Use valgrind on GL to check for memory leaks.)
13. An overloaded assignment operator with the signature:
14.    const ExpBST& ExpBST::operator=(const ExpBST& rhs) ;
The assignment operator must deallocate memory used by the host object and then make deep copy of rhs.
15. An insert() function that adds an item to ExpBST that has the following signature:
16.    void ExpBST::insert (int key) ;
The insert() function must run in time proportional to the height of the ExpBST. Your ExpBST implementation must not allow duplicates. If the insert() function is invoked with a key value that already stored in the ExpBST, your insert()function should do nothing, except that it may rebalance the tree if an imbalance is detected.
17. A remove() member function that finds and removes an item with the given key value. The remove() function should return a boolean value that indicates whether the key was found. Your remove() function should not abort or throw an exception when the key is not stored in the BST. The remove() member function must have the following signature:
18.    bool ExpBST::remove(int key) ;
For full credit, your remove() method must run in time proportional to the height of the tree.
19. A find() function that reports whether the given key is stored in the tree. The signature of the find() method should be:
20.    bool ExpBST::find(int key) ;
For full credit, your find() method must run in time proportional to the height of the tree.
21. A member function rebalance() that rebalances a subtree of the ExpBST as described above. The running time of rebalance() must be constant. Note that a proper implementation would require you the keep track of the size and height of the subtree. Read the description above.
22. Your ExpBST class must have the following functions report on statistics of the ExpBST tree related to the rebalance operation:
23.    int ExpBST::getNumRebalance() const ;
24.    int ExpBST::getFailedRebalance() const ;
25.    int ExpBST::getExceedsHeight() const ;
26.    void ExpBST::resetStats() ;
The function getNumRebalance() must return the total number of calls to rebalance() since the beginning of the program or since the last call to resetStats() whichever one is later. Similarly, getFailedRebalance() must return the total number of calls to rebalance() that did not result in a shorter subtree, and getExceedsHeight() must return the total number of calls to rebalance() that resulted in a subtree that is still "too tall" as defined by the factor parameter given to the constructor. Finally, resetStats() will reset these 3 counts to zero.
As before, for the sake of simplicity, you may store these three counts in static data members, even though this may not be the most correct object-oriented design.
27. A member function inorder() that performs an inorder walk of the ExpBST and at each node, prints out the key followed by a : followed by the height of the node followed by another : followed by the size of the subtree rooted at that node. Furthermore, inorder() should print an open parenthesis before visiting the left subtree and a close parenthesis after visiting the right subtree. Nothing should be printed when inorder() is called on an empty tree, not even parentheses. This function will be used for grading, so make sure that it works correctly. The function must have the following signature:
28.    void ExpBST::inorder() ;
For example, calling inorder() on the following BST should produce the string:
(((((3:0:1)7:2:4((9:0:1)11:1:2))14:3:8((15:1:2(17:0:1))20:2:3))22:4:13(((24:0:1)26:1:2)30:2:4(37:0:1)))41:5:22((((50:0:1)54:1:3(59:0:1))60:2:4)64:3:8((71:1:2(75:0:1))79:2:3)))
[image: https://userpages.umbc.edu/~chang/cs341.f17/projects/proj3files/proj3fig5.jpg]
Fig. 1: an unbalanced binary search tree.
Here, the 41:5:22 indicates that the node with key 41 has height 5 and that there are 22 nodes in the tree. The output before 41:5:22 is produced by visiting the left subtree. Everything after 41:5:22 is produced by visiting the right subtree.
29. A function locate() that returns whether there is a node in a position of the ExpBST and stores the key in the reference parameter. The position is given by a constant C string, where a character 'L' indicates left and a character 'R' indicates right. The locate() function must have the signature
30.    bool ExpBST::locate(const char *position, int& key) ;
For example in the BST above:
· A call to locate("LRL",key) should return true and store 26 in key.
· A call to locate("RRLR",key) should return true and store 75 in key.
· A call to locate("RLR",key) should return false and not make any changes to key since there is not a node in that position. Note: locate() must not abort and must not throw an exception in this situation.
· A call to locate("",key) should return true and store 41 in key, since the empty string indicates the root of tree.
The grading programs will use locate() to check if your BST is balanced and that the keys are stored correctly. So, make sure locate() is correct. (This is not a difficult function to implement.)
31. Your ExpBST class must have the following functions to report on attributes of the ExpBST tree:
32.    bool ExpBST::empty() const  ;    // tree has no nodes
33.    int  ExpBST::height() const ;    // height of tree
34.    int  ExpBST::size() const ;      // number of nodes in tree
Since the height and size of each subtree is stored at each node, these functions must run in O(1) time.
Your code must run without segmentation fault and without memory leaks. For grading purposes, memory leaks are considered as bad as segmentation faults. This is because many segmentation faults are caused by poorly written destructors. A program with an empty destructor might avoid some segmentation faults but will leak memory horribly. Thus, not implementing a destructor or not deleting unused memory must incur a penalty that is equivalent to a segmentation fault.

[bookmark: tests]Testing
Here are sample driver programs to test your implementation. Passing these tests do not mean you will receive 100% on your project. It does not guarantee that you will pass tests used in grading. You should make additional tests of your own!
Note: your output may differ from the sample out provided because you may have correctly implemented remove() andrebalance() differently.
· Simple test of insertion 
Driver program: p3test1.cpp and Sample output: p3test1.txt
· Simple test that also removes nodes. Should see rebalancing during remove. 
Driver program: p3test2.cpp and Sample output: p3test2.txt
· Simple test of inserting and removing. This test includes inserting duplicates and attempt to remove keys not in the tree. 
Driver program: p3test3.cpp and Sample output: p3test3.txt
· Checking return values from remove and find. 
Driver program: p3test4.cpp and Sample output: p3test4.txt
· Tests copy constructor, destructor and assignment operator Should test this with valgrind 
Driver program: p3test5.cpp and Sample output: p3test5.txt
· Simple test of locate() function 
Driver program: p3test6.cpp and Sample output: p3test6.txt
· Big test with recursive sanityCheck(). Also checks correctness using STL set class. 
Driver program: p3test7.cpp and Sample output: p3test7.txt
· Tuning and timing test #1: The main function in p3test8.cpp takes 4 command line arguments. It should be invoked by:
·    ./p3test8.out 100000 3 5 2.0
The first parameter specifies 100,000 repetitions. The 3 is the maximum depth of the truncated inorder walk. The argument 5 is the minimum height that a subtree must have to be eligible for rebalancing. The factor 2.0 means that a subtree with 2.0 log(m) height is considered too tall. 
Driver program: p3test8.cpp and Sample output: p3test8.txt
· Tuning and timing test #2: similar to the previous test. This one uses a different pattern of calls to insert() and remove(). 
Driver program: p3test9.cpp and Sample output: p3test9.txt

Tuning Exercise
Use p3test8.cpp to tune your implementation. Run these programs with 100,000 repetitions with different values for the depth, minimum height and factor. Time you runs using the Unix time command and select the combination of values that minimize the running time. Remember that factor is a floating point value and you can select non-integer values like 2.3 for factor. Note the number of failed rebalances and the number of rebalances that exceed the height restriction. Does this matter? Now try your settings on p3test9.cpp and on other sizes. What is your recommendation for values for depth, minimum height and factor?
Remember to show runs of p3test8.cpp and p3test9.cpp in your typescript file when you submit.

Implementation Notes
Here we list some recommendations and point out some traps and pitfalls.
· Here is the recommended incremental development stages for this project:
1. Pick an implementation of binary search trees and understand it well. (If you can't explain how insertion into an empty tree works correctly, then you do not understand it well.)
2. Modify the BST implementation to keep track of the height and size at each node. Do some timing runs to make sure that your modifications take only O(1) time to update each node.
3. Write the locate() function. Do not put this off until the end because it is used for grading and you will receive a bad grade if you do not have a working locate() function. Plus it is recursive, so you will have some practice writing a recursive function that works with binary search trees.
4. Write the truncated inorder walk that constructs the array of singleton nodes and subtrees. Use gdb to examine this array and to make sure that the array constructed is as you expect. Make sure that you are not copying entire subtrees in this step.
5. Instead of using a function that determines the shortest subtree, just pick a singleton node near the middle of the array as the new root. Do this recursively and you should be able to put the binary search tree back together.
6. Write the recursive function that finds the best singleton node to be the new root of a subtree when you rebalance.
At each stage of this process, you should have code for a BST class that does insert, remove and find without seg faulting or leaking memory. You should test your code after each stage so you know that any bugs that crop up was likely caused by the most recent changes. If valgrind reports memory read or write errors, fix these right away even if there are no memory leaks. These errors mean you have messed up memory some how. If you do not fix them right away, the bugs will manifest themselves in horrible ways later.
If you show up for office hours on the day the project is due with a few hundred lines of code that has not been debugged incrementally, it is unlikely that anyone will be able to help you effectively.
· Remember that we are defining the height of a leaf node to be 0. (The leaf node here is a node that contains actual data, not the null pointers at the bottom of a BST.)
· There are many places where the height and size of a node needs to be updated including, for example, in the rebalance procedure.
· When you insert a key that is already in the binary search tree, you are supposed to do nothing. (This is one of the standard alternatives.) This means you have to be careful about how you update the sizes of the subtrees, because when you insert a duplicate, the size does not change! (and you won't find out that it is a duplicate until you've found its 'clone').
· Remember that we are checking whether a node is unbalanced (actually whether the subtree rooted at that node is unbalanced) when we return from the recursion.
· Your rebalance() operation should be done in two phases (both are recursive). In the first phase, you determine which singleton node should be the root of the new subtree. You do so by trying every singleton node as the root and recursively determining the optimum height of the left subtree and the optimum height of the right subtree. This will also let you determine the optimum height of the subtree (which you will need for recursion).
During this first phase, you DO NOT reconstruct the subtree. You cannot reconstruct the subtree because you do not yet know which singleton node should be the root. The problem isn't reconstructing the subtree at the top level. The problem is that you don't want the recursive calls to construct the subtree when the choice of the top level root isn't optimal.
Once you have figured out which singleton node should be the root, you can go ahead and reconstruct the subtree by picking that node to be the root and recursively reconstructing the left subtree and the right subtree. Note that reconstructing the left subtree or the right subtree will again require you to select the optimum root for each subtree.
Thus, you need two functions (both are recursive). One function called shortestBST() that tells you which singleton node should be the root and what the height of the shortest BST would be. The second function recursively constructs the binary search tree. Note that the second function needs to call shortestBST() as well.

What to Submit
Before submitting, remove all extraneous output from your program. (Just comment them out.) Your typescript file should have only a few hundred lines of output, not 195 megabytes of text. (Yes, that's the record.) We will not look at the typescript file beyond the first 1000 lines.
You must submit the following files to the proj3 directory.
· ExpBST.h
· ExpBST.cpp
· Driver.cpp
The Driver.cpp program should include tests showing the parts of your project that work correctly. All of your implementation should be placed in ExpBST.h and ExpBST.cpp. Do not submit other files.
If you followed the instructions in the Project Submission page to set up your directories, you can submit your code using this Unix command command.
   cp ExpBST.h ExpBST.cpp Driver.cpp ~/cs341proj/proj3/
Your code should compile with the test programs using these Unix commands on GL:
   g++ -I . ../../00Proj3/p3test1.cpp ExpBST.cpp -o t1.out
   g++ -I . ../../00Proj3/p3test2.cpp ExpBST.cpp -o t2.out
   g++ -I . ../../00Proj3/p3test3.cpp ExpBST.cpp -o t3.out
   g++ -I . ../../00Proj3/p3test4.cpp ExpBST.cpp -o t4.out
   g++ -I . ../../00Proj3/p3test5.cpp ExpBST.cpp -o t5.out
   g++ -I . ../../00Proj3/p3test6.cpp ExpBST.cpp -o t6.out
   g++ -I . ../../00Proj3/p3test7.cpp ExpBST.cpp -o t7.out
   g++ -I . ../../00Proj3/p3test8.cpp ExpBST.cpp -o t8.out
   g++ -I . ../../00Proj3/p3test9.cpp ExpBST.cpp -o t9.out
Use the Unix script command to record yourself compiling these programs. Then, use p3test8.cpp and p3test9.cpp to perform some timing runs:
   time ./p3test8.out 100000 3 5 2.0
   time ./p3test8.out 200000 3 5 2.0
   time ./p3test8.out 400000 3 5 2.0
   time ./p3test9.out 100000 3 5 2.0
   time ./p3test9.out 200000 3 5 2.0
   time ./p3test9.out 400000 3 5 2.0
Finally, run p3test8.cpp and p3test9.cpp using the values of depth, minimum height and factor that you recommend in the tuning exercise.
Finally, remember to exit from script.
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