CSCI 2824 Discrete Structures
Instructor: Hoenigman
Assignment 1
Due Date: 09/05/2013 (Thursday, at the beginning of class).

Problem 1 (35 points)

For this problem, you are asked to write down a ${ }^{* *}$ recurrence relation** and the ${ }^{* *}$ closed form ${ }^{* *}$ for each of the sequences described below. In each case the indices n are natural numbers and thus $n \geq 0$.

1. $a_{n}=1,2,4,8,16, \ldots$ (the sequence of all powers of 2).
2. $b_{n}=1,3,2,9,4,27,8,81, \ldots$ (altenating powers of 2 and 3).
3. $c_{n}=0,1,3,6,10,15, \ldots$ (Hint: look at the differences between successive elements. That should immediately suggest a recurrence.)
4. $d_{n}=1,0,1,0,1,0,1,0, \ldots$ (sequence of alternating 1 s and 0 s).
5. $e_{n}=1,1,0,0,1,1,0,0, \ldots$ (block of two ones, followed by a block of two zeros, followed by a block of two ones ...)

Problem 2 (35 points)

Write down recurrence equations for the sequences with the closed forms and summations given below. In each case assume $n \in \mathbb{N}$.

1. $p_{n}=2^{n+2}$.
2. $q_{n}=n!$ (note that $0!=1$, by definition)
3. $r_{n}=2 n^{2}-3 n+5$.
4. $s_{n}= \begin{cases}\frac{n}{2} & n \text { is even } \\ \frac{n+1}{2} & n \text { is odd }\end{cases}$
5. $t_{n}=\frac{1}{n+1}$.
6. $u_{n}=\sum_{j=1}^{n}(2 j+1)$
7. $v_{n}=\prod_{j=1}^{n} 2^{n}$

Problem 3 (30 points)

Let s_{n} be a sequence for $n \in \mathbb{N}$. Its first difference sequence d_{n} is defined by $d_{n}=s_{n+1}-s_{n}$. Answer the following questions about the first difference sequences:

1. Take the sequence $s_{n}=2 n^{2}+3 n+2$. Write down the first 5 elements of its first difference sequence.
2. Write down a closed form for the first difference sequence by noticing the pattern.
3. Write down the second difference sequence, which is the first difference of the first difference sequence.
