1. Consider the following partially completed computer printout for a regression analysis where the dependent variable is the price of a personal computer and the independent variable is the size of the hard drive.

SUMMARY OUTPUT					
Regression Statistics					
Multiple R	0.819361805				
R Square					
Adjusted R Square	0.661687702				
Standard Error					
Observations	36				
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	33116034.84	33116034.84		
Residual		16211214.72			
Total	35	49327249.56			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	50.84102383	246.9869514	0.205844979	0.838139607	
Hard Drive Capacity	217.7539792	26.12854674		$9.95844 \mathrm{E}-10$	

Based on the information provided, what is the F statistic?About 8.33Just over 2.35About 4.76About 69.5

QUESTION 2

1. The standard error of the estimate is a measure oftotal variation of the Y variable.the variation around the sample regression line.explained variation.the variation of the X variable.

QUESTION 3

3.Nintendo Sony would like to test the hypothesis that a difference exists in the average age of users of a Wii, a PlayStation, or an Xbox console game. The following data represent the age of a random sample of Wii, PlayStation, and Xbox users.

Wii	PlayStation	Xbox
37	26	31
31	21	20
47	24	38
29	24	31
36	25	30

Using $\alpha=0.05$, the conclusion for this hypothesis test would be that because the test statistic ismore than the critical value, we cannot conclude that there is a difference in the average age of users of a Wii, a PlayStation, or an Xbox console game.less than the critical value, we cannot conclude that there is a difference in the average age of users of a Wii, a PlayStation, or an Xbox console game.more than the critical value, we can conclude that there is a difference in the average age of users of a Wii, a PlayStation, or an Xbox console game.less than the critical value, we can conclude that there is a difference in the average age of users of a Wii, a PlayStation, or an Xbox console game.

QUESTION 4

1. The relationship of Y to four other variables was established as $\mathrm{Y}=12+3 \mathrm{X} 1-5 \mathrm{X} 2+7 \mathrm{X} 3+2 \mathrm{X} 4$. When X1 increases 5 units and X2 In a sample of $n=23$, the Student's t test statistic for a correlation of $\mathrm{r}=.500$ would be:2.5592.8192.646can't say without knowing α (alpha)

4 points
 Save Answer

QUESTION 5

1. Given the following ANOVA table (some information is missing), find the F statistic.

Source	Sum of Squares	$d f$	Mean Square
Treatment	744.00	4	
Error	751.50	15	
Total	1.495 .50	19	
${ }^{3.71}$			
0.99			
0.497			
4.02			

QUESTION 6

1. Examine the following two-factor analysis of variance table:

Source	SS	df	MS	F-Ratio
Factor A	162.79	4		
Factor B			28.12	
AB Interaction	262.31	12		
Error		-		
Total	$1,298.74$	84		

Complete the analysis of variance table.$\mathrm{MSA}=40.928$, F Factor $\mathrm{A}=3.35, \mathrm{SSB}=85.35$, Factor $\mathrm{B} \mathrm{df}=3, \mathrm{~F}$ Factor $\mathrm{B}=2.316, \mathrm{MSAB}=$ 21.859, F Factor $\mathrm{AB}=1.8, \mathrm{SSE}=789.29, \mathrm{SSE} \mathrm{df}=66, \mathrm{MSE}=12.143$MSA $=40.928$, F Factor $\mathrm{A}=3.35, \mathrm{SSB}=85.35$, Factor B df $=4, \mathrm{~F}$ Factor $\mathrm{B}=2.316$, MSAB $=$ 21.859, F Factor $\mathrm{AB}=2.1 \mathrm{SSE}=789.29, \mathrm{SSE} \mathrm{df}=66, \mathrm{MSE}=12.143$$\mathrm{MSA}=40.698, \mathrm{~F}$ Factor $\mathrm{A}=3.35, \mathrm{SSB}=84.35$, Factor $\mathrm{B} \mathrm{df}=5, \mathrm{~F}$ Factor $\mathrm{B}=2.316, \mathrm{MSAB}=$ 21.859, F Factor $\mathrm{AB}=2.1, \mathrm{SSE}=789.29, \mathrm{SSE} \mathrm{df}=65, \mathrm{MSE}=12.143$$\mathrm{MSA}=40.698, \mathrm{~F}$ Factor $\mathrm{A}=3.35, \mathrm{SSB}=84.35$, Factor B df $=3, \mathrm{~F}$ Factor $\mathrm{B}=2.316, \mathrm{MSAB}=$ 21.859, F Factor $\mathrm{AB}=1.8, \mathrm{SSE}=789.29, \mathrm{SSE} \mathrm{df}=65, \mathrm{MSE}=12.143$

4 points
 Save Answer

QUESTION 7

1. The critical value for a two-tailed test of $\mathrm{H} 0: ~ \beta 1=0$ at a (alpha) $=.05$ in a simple regression with 22 observations is:

+ or - 1.725
+ or - 2.086
+ or -2.528
+ or -1.960

QUESTION 8

1. A regression equation that predicts the price of homes in thousands of dollars is $t=24.6+0.055 \times 1-$ 3.6×2, where x 2 is a dummy variable that represents whether the house in on a busy street or not. Here $\mathrm{x} 2=1$ means the house is on a busy street and $\mathrm{x} 2=0$ means it is not. Based on this information, which of the following statements is true?On average, homes that are on busy streets are worth $\$ 3600$ less than homes that are not on busy streets.On average, homes that are on busy streets are worth $\$ 3.6$ less than homes that are not on busy streets.On average, homes that are on busy streets are worth $\$ 3600$ more than homes that are not on busy streets.On average, homes that are on busy streets are worth $\$ 3.6$ more than homes that are not on busy streets.

4 points

QUESTION 9

1. The variation attributable to factors other than the relationship between the independent variables and the explained variable in a regression analysis is represented byregression sum of squares.error sum of squares.total sum of squares.regression mean squares.

4 points
 Save Answer

QUESTION 10

1. Degrees of freedom for the between-group variation in a one-factor ANOVA with $\mathrm{n} 1=$ $8, \mathrm{n} 2=5, \mathrm{n} 3=7, \mathrm{n} 4=9$ would be:

329

4 points
 Save Answer

QUESTION 11

1. A hypothesis test is conducted at the 5 percent level of significance to test whether the population correlation is zero. If the sample consists of 25 observations and the correlation coefficient is 0.60 , then the computed test statistic would be:2.0711.9603.5971.645

4 points

Save Answer

QUESTION 12

1. A two-factor analysis of variance is conducted to test the effect that price and advertising have on sales of a particular brand of bottled water. Each week a combination of particular levels of price and advertising are used and the sales amount is recorded. The computer results are shown below.

ANOVA

Source of Variation	SS	$d f$	MS	F	p-value	F-crit
Sample (advertising)	99.73324	1	99.73324	5.251652	0.034201	4.413873
Columns (price)	1150.432	2	575.2161	30.28914	$1.74 \mathrm{E}-06$	3.554557
Interaction	1577.526	2	788.7629	41.53387	$1.8 \mathrm{E}-07$	3.554557
Within	341.835	18	18.99083			
Total	3169.526	23				

Based on the results above and a 0.05 level of significance, which of the following is correct?

There is no interaction between price and advertising, so results for individual factors may be
misleading.There is interaction between price and advertising, so the above results for individual factors may be misleading.There is no interaction between price and advertising, and both factors significantly affect sales.There is interaction between price and advertising, so the above results conclusively show that both factors affect price.

4 points | | Save Answer |
| :--- | :--- |

QUESTION 13

1. Many companies use well-known celebrities as spokespersons in their TV advertisements. A study was conducted to determine whether brand awareness of female TV viewers and the gender of the spokesperson are independent. Each in a sample of 300 female TV viewers was asked to identify a product advertised by a celebrity spokesperson. The gender of the spokesperson and whether or not the viewer could identify the product was recorded. The numbers in each category are given below.

	Male Celebrity	Female Celebrity
Identified product	41	61
Could not identify	109	89

Referring to the Table, the degrees of freedom of the test statistic are
24299

4 points

Save Answer

QUESTION 14

1. In a multiple regression with six predictors in a sample of 67 U.S. cities, what would be the critical value for an F-test of overall significance at $\mathrm{a}=.05$?2.292.252.372.18

4 points
 Save Answer

QUESTION 15

1. Consider this partially completed one-way ANOVA table:

Source of Variation	SS	df	MS	F-ratio
Between Samples		3		
Within Samples	$\underline{405}$	-		
Total	888	31		

How many different populations are being considered in this analysis?2465

QUESTION 16

1. The slope $\left(b_{1}\right)$ representspredicted value of Y when $X=0$.the estimated average change in Y per unit change in X.the predicted value of Y.variation around the line of regression.

4 points

Save Answer

QUESTION 17

1. What do we mean when we say that a simple linear regression model is "statistically" useful?All the statistics computed from the sample make sense.The model is an excellent predictor of Y.The model is "practically" useful for predicting Y.

The model is a better predictor of Y than the sample mean,

4 points
Save Answer

QUESTION 18

1. Nintendo Sony would like to test the hypothesis that a difference exists in the average age of users of a Wii, a PlayStation, or an Xbox console game. The following data represent the age of a random sample of Wii, PlayStation, and Xbox users.

Wii	PlayStation	Xbox
37	26	31
31	21	20
47	24	38
29	24	31
36	25	30

Using $\alpha=0.05$, the critical value for this hypothesis test would be \qquad .3.8854.5815.7186.040

4 points
 Save Answer

QUESTION 19

1. The following regression output was generated based on a sample of utility customers. The dependent variable was the dollar amount of the monthly bill and the independent variable was the size of the house in square feet.

SUMMARY OUTPUT				
Regression Statistics				
Multiple R	0.149769088			
R Square	0.02243078			
Adjusted R Square	-0.012482407			
Standard Error	16.72762259			
Observations	30			
ANOVA				
	df	SS	MS	F
Regression	1	179.7725274	179.7725	0.642473
Residual	28	7834.774007	279.8134	
Total	29	8014.546534		
	Coefficients	Standard Error	t Stat	P-value
Intercept	66.44304169	13.44691911	4.941135	3.26E-05
Square Feet	0.005258733	0.006560753	0.801544	0.429567

Based on this regression output, which of the following statements is not true?The number of square feet in the house explains only about 2 percent of the variation in the monthly power bill.At an alpha level equal to 0.05 , there is no basis for rejecting the hypothesis that the slope coefficient is equal to zero.The average increase in the monthly power bill is about 66.4 for each additional square foot of space in the house.The correlation of the monthly power bill with the square footage of the house is 0.149

4 points
 Save Answer

QUESTION 20

1. Consider this partially completed one-way ANOVA table:

Source of Variation	SS	df	MS	F-ratio
Between Samples		3		
Within Samples	$\underline{405}$	-		
Total	888	31		

Based on the analysis of variance F-test, what conclusion should be reached regarding the null hypothesis? Test using alpha $=0.05$.Since $11.1309>2.9467$ accept H 0 and conclude that all population means are the same.Since 2.9467 > 11.1309 accept H 0 and conclude that all population means are the same.Since $11.1309>2.9467$ reject H 0 and conclude that at least two populations means are different.Since $2.9467>11.1309$ reject H 0 and conclude that at least two populations means are different.

4 points
 Save Answer

QUESTION 21

1. The following EXCEL tables are obtained when "Score received on an exam (measured in percentage points)" (Y) is regressed on "percentage attendance" (X) for 22 students in a Statistics for Business and Economics course.

Multiple R	0.142620229
R Square	0.02034053
Adjusted R	-0.028642444
Square	
Standard Error	20.25979924
Observations	22

	Coefficients	Standard Error	T Stat	P-value
Intercept	39.39027309	37.24347659	1.057642216	0.302826622
Attendance	0.340583573	0.52852452	0.644404489	0.526635689

Which of the following statements is true?If attendance increases by 0.341%, the estimated average score received will increase by 1 percentage point.If attendance increases by 1%, the estimated average score received will increase by 39.39 percentage points.If attendance increases by 1%, the estimated average score received will increase by 0.341 percentage points.If the score received increases by 39.39%, the estimated average attendance will go up by 1%.

4 points

Save Answer

QUESTION 22

1. A local trucking company fitted a regression to relate the travel time (days) of its shipments as a function of the distance traveled (miles). The fitted regression is Time $=$ $-7.126+.0214$ Distance, based on a sample of 20 shipments. The estimated standard error of the slope is 0.0053 . Find the critical value for a right-tailed test to see if the slope is positive, using a (alpha) $=.05$.2.1012.5521.9601.734

4 points | | Save Answer |
| :--- | :--- |

QUESTION 23

1. The following regression output is from a multiple regression model:

SUMMARY OUTPUT				
Regression Statistics				
Multiple R	0.919404776			
R Square	0.845305142			
Adjusted R Square	0.816299856			
Standard Error	11.39504264			
Observations	20			
ANOVA				
	df	SS	MS	F
Regression	3	11352.44805	3784.149351	29.14314
Residual	16	2077.551948	129.8469967	
Total	19	13430		
	Coefficients	Standard Error	t Stat	P-value
Intercept	72.31785346	12.44716792	5.809984561	$2.66 \mathrm{E}-05$
t	34.83108152	5.008279449	6.954700088	3.24E-06
t2	-3.575838282	0.547142399	-6.535480136	6.87E-06
t3	0.110697771	0.01715369	6.45329207	7.97E-06

The variables $\mathrm{t}, \mathrm{t} 2$, and t 3 represent the t , t -squared, and t -cubed respectively where t is the indicator of time from periods $t=1$ to $t=20$. Which of the following best describes the type of forecasting model that has been developed?A complete third-order polynomial modelA tri-variate smoothed regression modelA nonlinear trend modelA qualitative regression model

QUESTION 24

1. Examine the following two-factor analysis of variance table:

Source	SS	$d f$	MS	F-Ratio
Factor A	162.79	4		
Factor B			28.12	
AB Interaction	262.31	12		
Error		-		
Total	$1,298.74$	84		

Does the ANOVA table indicate that the levels of factor B have equal means? Use a significance level of 0.05 .Fail to reject H0. Conclude that there is not sufficient evidence to indicate that at least two levels of Factor B have different mean responses.Reject H0. Conclude that there is sufficient evidence to indicate that at least two levels of Factor B have different mean responses.Fail to reject H0. Conclude that there is sufficient evidence to indicate that at least two levels of Factor B have different mean responses.Reject H0. Conclude that there is not sufficient evidence to indicate that at least two levels of Factor B have different mean responses.

1. Parents complain that children read too few storybooks and watch too much television nowadays. A survey of 1,000 children reveals the following information on average time spent watching TV and average time spent reading storybooks

| | Average time spent reading story books | Mo | |
| :--- | :--- | :--- | :--- | :--- |
| Average time spent watching TV | Less than 1 hour | Between 1and 2 hours | 130 |
| Less than 2 hours | 90 | 32 | 8 |
| More than 2 hours | 655 | | |

Referring to the Table, if the null hypothesis of no connection between time spent watching TV and time spent reading story books is true, how many children watching less than 2 hours of TV and reading no more than 2 hours of story books on average can we expect?227.23262.91
969.75

QUESTION 26

1. With two-way ANOVA, the total sum of squares is portioned in the sum of squares forFactor A, Factor B, block, and error.Factor A, Factor B, within, and error.Factor A, Factor B, interaction, and error.Factor A, Factor B, interaction, and between.

4 points

Save Answer

QUESTION 27

1. Consider this partially completed one-way ANOVA table:

Source of Variation	SS	df	MS	F-ratio
Between Samples		3		
Within Samples	$\underline{405}$	-		
Total	888	31		

Fill in the ANOVA table with the missing values.SSB $=483, \mathrm{MSB}=161$, F-ratio $=11.1309$, Within Samples df $=28, \mathrm{MSW}=14.464$$\mathrm{SSB}=483, \mathrm{MSB}=161$, F- ratio $=8.1629$, Within Samples $\mathrm{df}=28, \mathrm{MSW}=14.464$$\mathrm{SSB}=483, \mathrm{MSB}=161$, F-ratio $=8.1629$, Within Samples df $=25, \mathrm{MSW}=14.464$$\mathrm{SSB}=504, \mathrm{MSB}=161$, F-ratio $=8.1629$, Within Samples df $=28, \mathrm{MSW}=14.464$
4 points ${ }^{2}$ Save Answer

QUESTION 28

1. \qquad ANOVA relies on matched samples in a similar way to the matched-pairs hypothesis testing that compares two population means.One-wayRandomized blockTwo-way
Three-way

4 points

Save Answer

QUESTION 29

1. The following EXCEL tables are obtained when "Score received on an exam (measured in percentage points)" (Y) is regressed on "percentage attendance" (X) for 22 students in a Statistics for Business and Economics course.

Regression Statistics				
Multiple R	0.142620229			
R Square	0.02034053			
Adjusted R	-0.028642444			
Square				
Standard Error	20.25979924			
Observations	22			
	Coefficients	Standard Error	T Stat	P-value
Intercept	39.39027309	37.24347659	1.057642216	0.302826622
Attendance	0.340583573	0.52852452	0.644404489	0.526635689

2.

Which of the following statements is true?-2.86% of the total variability in score received can be explained by percentage attendance.-2.86% of the total variability in percentage attendance can be explained by score received.2% of the total variability in score received can be explained by percentage attendance.2% of the total variability in percentage attendance can be explained by score received.

4 points ${ }^{2}$
QUESTION 30

1. In a particular model, the sum of the squared residuals was 847 . If the model had 5 independent variables, and the data set contained 40 points, the value of the standard error of the estimate is 24.911 .True
False

4 points Save Answer

QUESTION 31

1. The following multiple regression output was generated from a study in which two independent variables are included. The first independent variable (X1) is a quantitative variable measured on a continuous scale. The second variable (X2) is qualitative coded 0 if Yes, 1 if No

SUMMARY OUTPUT				
Regression Statistics				
Multiple R	0.79288			
R Square	0.628659			
Adjusted R Square	0.522562			
Standard Error	53.93691			
Observations	10			
ANOVA				
	df	SS	MS	F
Regression	2	34475.67	17237.83	5.925303
Residual	7	20364.33	2909.19	
Total	9	54840		
Coefficientsandard Em			t Stat	P-value
Intercept	413.0573	67.1026	6.155608	0.000465
X1	-46.7516	13.61245	-3.43447	0.010919
X2	-36.051	35.07682	-1.02777	0.338256

Based on this information, which of the following statements is true?The model explains nearly 63 percent of the variation in the dependent variableIf tested at the 0.05 significance level, the overall model would be considered statistically significant.The variable X1 has a slope coefficient that is significantly different from zero if tested at the 0.05 level of significance.All of the above are true.

QUESTION 32

The \qquad is another term for the variance of the sample data.mean square totalmean square betweenmean square withintotal sum of squares

4 points
 Save Answer

QUESTION 33

1. We are interested in determining whether the opinions of the individuals on gun control (as to Yes, No, and No Opinion) are uniformly distributed. A sample of 150 was taken and the following data were obtained.

Do you support gun control	Number of Responses
Yes	40
No	60
No Opinion	50

The conclusion of the test with alpha $=0.05$ is that the views of people on gun control are:uniformly distributed.not uniformly distributed.inconclusive.None of the above

4 points

Save Answer

QUESTION 34

1. When testing for independence in a contingency table with 3 rows and 4 columns, there are \qquad degrees of freedom.567
12

4 points
Save Answer

QUESTION 35

1. The following regression output was generated based on a sample of utility customers. The dependent variable was the dollar amount of the monthly bill and the independent variable was the size of the house in square feet.

SUMMARY OUTPUT				
Regression Statistics				
Multiple R	0.149769088			
R Square	0.02243078			
Adjusted R Square	-0.012482407			
Standard Error	16.72762259			
Observations	30			
ANOVA				
	df	SS	MS	F
Regression	1	179.7725274	179.7725	0.642473
Residual	28	7834.774007	279.8134	
Total	29	8014.546534		
	Coefficients	Standard Error	t Stat	P-value
Intercept	66.44304169	13.44691911	4.941135	3.26E-05
Square Feet	0.005258733	0.006560753	0.801544	0.429567

Based on this regression output, what is the 95 percent confidence interval estimate for the population regression slope coefficient?Approximately -0.0003 \qquad $+0.0103$About -0.0082 ----- +0.0188Approximately - 32.76 \qquad +32.79None of the above
4 points \quad Save Answer

Click Save and Submit to save and submit. Click Save All Answers to save all answers.

