Homework \#3

1. Problem 1

[a] $\mathbf{V}=100 /-45^{\circ} \mathrm{V}, \quad \mathbf{I}=20 / 15^{\circ} \mathrm{A}$
Therefore

$$
\begin{aligned}
& P=\frac{1}{2}(100)(20) \cos [-45-(15)]=500 \mathrm{~W}, \quad \mathrm{~A} \rightarrow \mathrm{~B} \\
& Q=1000 \sin -60^{\circ}=-866.03 \mathrm{VAR}, \quad \mathrm{~B} \rightarrow \mathrm{~A}
\end{aligned}
$$

[b] $\mathbf{V}=100 \angle-45^{\circ}, \quad \mathbf{I}=20 / 165^{\circ}$

$$
\begin{aligned}
& P=1000 \cos \left(-210^{\circ}\right)=-866.03 \mathrm{~W}, \quad \mathrm{~B} \rightarrow \mathrm{~A} \\
& Q=1000 \sin \left(-210^{\circ}\right)=500 \mathrm{VAR}, \quad \mathrm{~A} \rightarrow \mathrm{~B}
\end{aligned}
$$

[c] $\mathbf{V}=100 \angle-45^{\circ}, \quad \mathbf{I}=20 \angle-105^{\circ}$

$$
\begin{aligned}
& P=1000 \cos \left(60^{\circ}\right)=500 \mathrm{~W}, \quad \mathrm{~A} \rightarrow \mathrm{~B} \\
& Q=1000 \sin \left(60^{\circ}\right)=866.03 \mathrm{VAR}, \quad \mathrm{~A} \rightarrow \mathrm{~B}
\end{aligned}
$$

$[\mathrm{d}] \mathbf{V}=100 / 0^{\circ}, \quad \mathbf{I}=20 / 120^{\circ}$

$$
\begin{aligned}
& P=1000 \cos \left(-120^{\circ}\right)=-500 \mathrm{~W}, \quad \mathrm{~B} \rightarrow \mathrm{~A} \\
& Q=1000 \sin \left(-120^{\circ}\right)=-866.03 \mathrm{VAR}, \quad \mathrm{~B} \rightarrow \mathrm{~A}
\end{aligned}
$$

2. Problem 2

For $v(t)=3 \cos \left(\omega t+25^{\circ}\right)$ and $i(t)=5 \sin \left(\omega t-65^{\circ}\right)$, compute the power factor and reactive factor.

$$
\text { Ans) } \begin{aligned}
\mathbf{P F} & \left.=\cos \left(\theta_{v}-\theta_{i}\right)=\cos \left(25^{\circ}-\left(-155^{\circ}\right)\right)=\cos \left(180^{\circ}\right)\right)=-1 \\
\mathbf{R F} & \left.=\sin \left(\theta_{v}-\theta_{i}\right)=\sin \left(25^{\circ}-\left(-155^{\circ}\right)\right)=\sin \left(180^{\circ}\right)\right)=0
\end{aligned}
$$

3. Problem 3

From Ex. 9.4 $\quad I_{\text {eff }}=\frac{I_{\rho}}{\sqrt{3}}=\frac{0.18}{\sqrt{3}} \mathrm{~A}$
$P=I_{\mathrm{eff}}^{2} R=\left(\frac{0.0324}{3}\right)(5000)=54 \mathrm{~W}$
4. Problem 4 (The problem means that a capacitor of -j52 is connected to the load in parallel)
[a] $Z=(39+j 26) \|(-j 52)=48-j 20=52 \angle-22.62^{\circ} \Omega$

$$
\begin{aligned}
& \text { Therefore } \mathbf{I}_{\ell}=\frac{250 / 0^{\circ}}{48-j 20+1+j 4}=4.85 / 18.08^{\circ} \mathrm{A}(\mathrm{rms}) \\
& \mathbf{V}_{\mathrm{L}}=Z \mathbf{I}_{\ell}=\left(52 \angle-22.62^{\circ}\right)\left(4.85 / 18.08^{\circ}\right)=252.20 \angle-4.54^{\circ} \mathrm{V}(\mathrm{rms}) \\
& \mathbf{I}_{\mathrm{L}}=\frac{\mathbf{V}_{\mathrm{L}}}{39+j 26}=5.38 \Omega-38.23^{\circ} \mathrm{A}(\mathrm{rms})
\end{aligned}
$$

[b] $S_{\mathrm{L}}=\mathbf{V}_{L} \mathbf{I}_{L}^{*}=\left(252.20 /-4.54^{\circ}\right)\left(5.38 /+38.23^{\circ}\right)=1357 / 33.69^{\circ}$

$$
=(1129.09+j 752.73) \mathrm{VA}
$$

$$
P_{\mathrm{L}}=1129.09 \mathrm{~W} ; \quad Q_{\mathrm{L}}=752.73 \mathrm{VAR}
$$

[c] $P_{\ell}=\left|\mathbf{I}_{\ell}\right|^{2} 1=(4.85)^{2} \cdot 1=23.52 \mathrm{~W} ; \quad Q_{\ell}=\left|\mathbf{I}_{\ell}\right|^{2} 4=94.09 \mathrm{VAR}$
[d] S_{g} (delivering) $=250 \mathrm{I}_{\ell}^{*}=(1152.62-j 376.36) \mathrm{VA}$
Therefore the source is delivering 1152.62 W and absorbing 376.36 magnetizing VAR.
[e] $Q_{\text {cup }}=\frac{\left|\mathrm{V}_{\mathrm{L}}\right|^{2}}{-52}=\frac{(252.20)^{2}}{-52}=-1223.18 \mathrm{VAR}$
Therefore the capacitor is delivering 1223.18 magnetizing VAR.
Check: $\quad 94.09+752.73+376.36=1223.18$ VAR and

$$
1129.09+23.52=1152.62 \mathrm{~W}
$$

5. Problem 5

[a] The phasor domain equivalent circuit and the Thévenin equivalent are shown below:
Phasor domain equivalent circuit:

Thévenin equivalent:

$\mathbf{V}_{\mathrm{Th}}=3 \frac{-j 800}{20-j 40}=48-j 24=53.67 \angle-26.57^{\circ} \mathrm{V}$
$Z_{\mathrm{Th}}=4+j 18+\frac{-j 800}{20-j 40}=20+j 10=22.36 / 26.57^{\circ} \Omega$
For maximum power transfer, $Z_{\mathrm{L}}=(20-j 10) \Omega$
[b] $\mathbf{I}=\frac{53.67 /-26.57^{\circ}}{40}=1.34 /-26.57^{\circ} \mathrm{A}$
Therefore $P=\left(\frac{1.34}{\sqrt{2}}\right)^{2} 20=17.96 \mathrm{~W}$
[c] $R_{\mathrm{L}}=\left|Z_{\mathrm{Th}}\right|=22.36 \Omega$
[d] $\mathbf{I}=\frac{53.67 /-26.57^{\circ}}{42.36+j 10}=1.23\left\langle-39.85^{\circ} \mathrm{A}\right.$
Therefore $P=\left(\frac{1.23}{\sqrt{2}}\right)^{2}(22.36)=17 \mathrm{~W}$

6. Problem 6

$$
\begin{aligned}
& j \omega L=j 10,000\left(10^{-3}\right)=j 10 \Omega ; \quad \frac{1}{j \omega C}=\frac{10^{6}}{j 10,000(2.5)}=-j 40 \Omega \\
& -15+\frac{\mathbf{V}_{o}}{-j 40}+\frac{\mathbf{V}_{o}+10\left(\mathbf{V}_{o} /-j 40\right)}{20+j 10}=0 \\
& \therefore \mathbf{V}_{o}\left[\frac{1}{-j 40}+\frac{1+j 0.25}{20+j 10}\right]=15 \\
& \therefore \mathbf{V}_{o}=300-j 100 \mathrm{~V} \\
& \therefore \mathbf{I}_{\Delta}=\frac{\mathbf{V}_{o}}{-j 40}=2.5+j 7.5 \mathrm{~A} \\
& \mathbf{I}_{o}=15 / 0^{\circ}-\mathbf{I}_{\Delta}=15-2.5-j 7.5=12.5-j 7.5=14.58 \ell-30.9^{\circ} \mathrm{A} \\
& P_{20 \Omega}=\frac{1}{2}\left|\mathbf{I}_{o}\right|^{2} 20=2125 \mathrm{~W}
\end{aligned}
$$

7. Problem 7
$\mathbf{I}_{g}=30 / 0^{\circ} \mathrm{mA}$
$j \omega L=j(100)(10)=j 1000 \Omega ; \quad \frac{1}{j \omega C}=\frac{10^{6}}{j(100)(2)}=-j 5000 \Omega$

$\mathbf{I}_{o}=\frac{30 / 0^{\circ}(j 1000)}{4000-j 4000}=3.75 \sqrt{2} / 135^{\circ} \mathrm{mA}$
$P=\left|\mathbf{I}_{o}\right|_{\text {rms }}^{2}(4000)=(3.75)^{2}(4000)=56.25 \mathrm{~mW}$
$Q=\left|\mathbf{I}_{o}\right|_{\mathrm{rmas}}^{2}(-5000)=-70.3125 \mathrm{mVAR}$
$S=P+j Q=56.25-j 70.3125 \mathrm{mVA}$
$|S|=90.044 \mathrm{mVA}$
