
COMP2017 / 9017 Assignment 1
Due: April 19th, 10pm AEST (Week 6 Thursday)

This assignment is worth 4% of your final assessment

Task Description

In this assignment you will be implementing and performing operations on a virtual stack. You will
need to emulate this virtual stack to store and reference variables and stack frame contexts before
reading a set of pseudo assembly instructions that dictate the operations that should be performed
on the stack. Your program will take a single command line argument being the name of the file
containing your pseudo-assembly code.

Before attempting this assignment it would be a good idea to familiarise yourself with the stack,
registers, stack frames, stack pointers, and program counters. Over the course of this assignment
you will need to track your own stack frames, manage operations, dynamically allocate memory and
handle files.

Command Format

You will be provided with a series of commands as operations taking the form:

([Address][Address_type])[Address][Address_type][Operation Code]

A series of operations form a function and will have some associated unique 4 bit label.

The second address and address type field is optional and will not be required for unary operations.
The address type specifies whether it is a stack address, a value, a register address or a pointer to
another stack address. Stack addresses are 7 bits long, register addresses are 3 bits long and values
are 8 bits long and pointer addresses are also 7 bits long.

The address type itself is two bits long and specifies the type of the preceding address.

00 - value: 1 byte long. The value in the preceding 8 bits should be interpreted as a single byte
value.

01 - register address: 3 bits long. This address refers to one of the eight fixed registers

10 - stack address: 7 bits long. This refers to an address on the stack containing a single byte.

11 - pointer valued: 7 bits long. This refers to an address on the stack containing a single byte that
itself refers to another address on the stack. This is useful for accessing the stack pointer. The
registers cannot be accessed using this pointer.

1

COMP2017 / 9017

Note that using the stack pointer to allocate a variable should result in the value of the stack pointer
being incremented.

The opcodes associated with these pseudo-assembly instructions are detailed below.

Opcodes:

000 - [MOV] - Pushes the value at some point in memory to another point in memory (register or
stack)

001 - [CAL] - Calls another function, the first argument is a single byte (using the ’00’ type) rep-
resenting what function is being called, the second argument is the stack address that starts a
sequence of arguments to be passed to the function. When the function returns, the return value
should be placed on the next available stack address.

010 - [POP] - Pops memory from the stack, to be returned to the calling function. Your implemen-
tation should manage the storage of this value.

011 - [RET] - Terminates the current function, this is guaranteed to always exist at the end of each
function. There may be more than one RET in a function.

100 - [ADD] - Takes two register addresses and adds the values, storing the result in the first listed
register

101 - [AND] - Takes two register addresses and ANDs their values, storing the result in the first
listed register

110 - [NOT] - Takes a register address and performs a bitwise not operation on the value at that
address. The result is stored in the same register

111 - [EQU] - Takes a register address and tests if it equals zero, the value in the register will be 1
if it is 0, or 0 if it is not. The result is stored in the same register.

Page 2 of 7

COMP2017 / 9017

You will need to read each of the op-codes and implement the operation on the memory specified.

Each function is defined with a one byte header dictating the label of the function and the number
of arguments, and a one byte tail specifying the number of instructions in the function. The function
with the label 0 is the main function and should be executed first.

[Padding bits]
[function label (4 bits)]|[number of arguments (4 bits)]

[OPCODE]
[OPCODE]
...
[RET]
[Number of instructions (1 byte)]

[function label (4 bits)]|[number of arguments (4 bits)]
[OPCODE]
[OPCODE]
...
[RET]
[Number of instructions (1 byte)]

The first few bits of the file are padding bits to ensure that the total number of bits in the file accu-
mulates to a whole number of bytes. The number of padding bits will always be strictly less than one
byte.

The last byte in each function dictates how many operations are performed within the function

The assembly code given for each of these functions will use relative addresses and always assume
that the address 0x00 will store the stack frame pointer, 0x01 will store the stack pointer, 0x02 will
store the program counter and 0x03 will store any arguments to the function. If no argument exists
then 0x03 will be unused.

You have a fixed set of registers, each with an associated three bit label (0-7). Each register can store
a single byte at a time. You may note that some of the operations can only be performed on the
registers.

Page 3 of 7

COMP2017 / 9017

Examples

Remember that the addresses used within each function are relative, you will need to translate these
appropriately when calling across multiple functions.

The following assembly function moves the values 3 and 5 to separate registers before adding them,
moving the value to the stack and returning that value.

Some equivalent C code might look like this:

#define BYTE unsigned char // Because all values are 1 byte
int main()
{

BYTE r1, r2;
BYTE s3;
r1 = 3; // Storing the value 3 at register 1
r2 = 5; // Storing the value 5 at register 2
r1 = r1 + r2; // Storing the value 3 at register 1
s3 = r1; // Store the register value on the stack
return s3; // Return the value at the stack address

}

The code is split and commented for ease of reading.

0000000 # Padding for the whole file!
0000|0000 # Function 0 with 0 arguments

00000101|00|000|01|000 # MOVE the value 5 to register 0
00000011|00|001|01|000 # MOVE the value 3 to register 1
000|01|001|01|100 # ADD registers 0 and 1
000|01|0000011|10|000 # MOVE register 0 to 0x03
0000011|10|010 # POP the value at 0x03
011 # Return from the function
00000110 # 6 instructions in this function

This function should return the value ‘8’.

The binary representation of the file will look like this:

000000000000000000001010000001000000000110000101000000
01001011000000100000111000000000111001001100000110

Notice the padded zero bits at the start of the file.

And when you try to read the file (for example using vim) it should look like this:

\x00\x00\x00\n\x04\x01\x85\x01,\x088\x03\x93\x06

This can also be re-written by taking advantage of the stack pointer. Remember that the stack pointer
should increment each time it is called.

Page 4 of 7

COMP2017 / 9017

Some number of bits of padding
0000|0000 # Function 0 with 0 arguments

00000101|00|000|01|000 # MOVE the value 5 to register 0
00000011|00|001|01|000 # MOVE the value 3 to register 1
000|01|001|01|100 # ADD register 1 to register 0
000|01|0000001|11|000 # MOVE register 0 to the next
address specified by the stack pointer (0x03 here)
0000011|10|010 # POP the value at 0x03 containing `8'
011 # Return from the function
00000101 # 6 instructions in this function

And we can also begin to concern ourselves with implementing loops or switches by changing the
value of the program counter.

Some number of bits of padding
0000|0000 # Function 0 with 0 arguments

00000010|00|001|01|000 # MOVE the value 2 to register 1
0000010|10|000|01|000 # MOVE the value of the
program counter to register 0
00000011|00|010|01|000 # MOVE the value 3 to register 2
001|01|010|01|100 # ADD register 2 to register 1
000|01|0000010|10|000 # MOVE the value of register 0
to the program counter, don't forget the program
counter increments!
0000011|10|010 # POP the value at 0x03
011 # Return from the function
00000111 # 7 instructions in this function

Note that as the program counter is a single byte, this indicates that the maximum number of instruc-
tions in a function is 255. Also note that the above program will never terminate. (You will not be
given test cases that do not terminate, but even in this minimalist language you can encounter infinite
loops).

Of course given our limited range of stack addresses, we can also have stack overflows:

Some number of bits of padding
0000|0000 # Function 0 with 0 arguments

000|01|0000001|11|000 # MOVE register 0 to the next
address specified by the stack pointer (0x03 here)
000|01|0000001|11|000 # MOVE register 0 to the next
address specified by the stack pointer (0x04 here)
000|01|0000001|11|000 # MOVE register 0 to the next
address specified by the stack pointer (0x05 here)
...
...
0000011|10|010 # POP the value at 0x03
011 # Return from the function
10000010 # 130 instructions in this function

Page 5 of 7

COMP2017 / 9017

When run this should display:

``Stack Overflow!''

Helpful Hints

Start by reading in the operation code from the above examples, you will need to use bitwise oper-
ations here and should refer to the relevant tutorial sheet. Switch and case statements will be useful
here.

You don’t know the number of padding bits at the start of the file in advance!

As you do not know the sizes of some of the objects before you read the associated files, you will
need to dynamically allocate memory.

Spend some time working out how the stack pointer, the frame pointer and the program counter work
before getting the rest of the program written.

You will not be tested on the internal state of your stack and as a result you have a degree of flexibility
in your implementation.

Don’t forget to free any allocated memory!

You will not be given invalid inputs, excepting cases where a stack overflow occurs.

Evaluation and Submission

You will submit your assignment using Edstem. You are encouraged to write your own test cases and
files to check the validity of your program while also submitting it to Edstem.

4 Marks are based on automatic marking of the assessment, automatic test cases include test
cases that are both visible and hidden on the Edstem assignment submission page.

Warning: Any attempts to deceive or disrupt the marking system will result in an immediate zero for
the entire assignment. Negative marks can be assigned if you do not follow the assignment specifica-
tion or if your code is unnecessarily or deliberately obfuscated.

Page 6 of 7

COMP2017 / 9017

Academic declaration

By submitting this assignment you declare the following:

I declare that I have read and understood the University of Sydney Student Plagiarism: Coursework Policy and Procedure, and except where specifically
acknowledged, the work contained in this assignment/project is my own work, and has not been copied from other sources or been previously submitted
for award or assessment.

I understand that failure to comply with the Student Plagiarism: Coursework Policy and Procedure can lead to severe penalties as outlined under
Chapter 8 of the University of Sydney By-Law 1999 (as amended). These penalties may be imposed in cases where any significant portion of my
submitted work has been copied without proper acknowledgment from other sources, including published works, the Internet, existing programs, the
work of other students, or work previously submitted for other awards or assessments.

I realise that I may be asked to identify those portions of the work contributed by me and required to demonstrate my knowledge of the relevant material
by answering oral questions or by undertaking supplementary work, either written or in the laboratory, in order to arrive at the final assessment mark.

I acknowledge that the School of Information Technologies, in assessing this assignment, may reproduce it entirely, may provide a copy to another
member of faculty, and/or communicate a copy of this assignment to a plagiarism checking service or in-house computer program, and that a copy of
the assignment may be maintained by the service or the School of IT for the purpose of future plagiarism checking.

Page 7 of 7

