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Abstract 
The study of design issues and implementation 

techniques for hypervisors is becoming an 
increasingly important aspect of operating systems 
pedagogy.  There is a demand for students, especially 
in the field of information assurance, who understand 
the security issues exposed by the improper use of 
virtualization functionality provided by modern 
processors and how virtualization can be exploited to 
improve system security.  Furthermore, students need 
to understand the process isolation vs. performance 
tradeoffs that must be made when designing 
hypervisors.   

This paper describes the experience of the 
authors in teaching a single-semester course to 
undergraduate students in designing, implementing, 
and debugging a hypervisor for an Intel 64 
processor.  Advanced topics in the course include 
how to capture and manage I/O and interrupt events 
in the hypervisor.  The paper also discusses the use of 
a PCIe-based hardware module for monitoring and 
debugging the hypervisor implementation. 

1. Introduction  

In current information technology (IT) parlance, 
virtualization refers to the ability to partition the 
hardware resources of a system such that each 
partition appears to be a complete hardware platform 
that can execute an operating system and applications 
independently from the operating system and 
applications executing concurrently within other such 
partitions.  Virtualization is becoming an increasingly 
popular feature implemented in the IT infrastructure 
of industrial, commercial, and academic enterprises 
because of a number of benefits including cost 
reduction, application security, and flexibility. 

The potential for cost reduction is the main 
reason driving the popularity of virtualization today.  
By consolidating servers dedicated to several 
different applications onto a single physical computer 
supporting multiple virtual servers, enterprises can 
reduce the number of physical computers that must 
be acquired with concomitant savings in power 

supply, cooling, space, and maintenance costs.  The 
energy savings also translates into goodwill that an 
enterprise can generate by appearing to be “green” 
(i.e., by being environmentally friendly). 

The ability to execute an application in its own 
dedicated virtualized processor and operating system 
environment has the potential for improving the 
security of application.  Because each application 
runs in isolation, a single compromised application or 
operating system environment does not necessarily 
mean that all the applications executing on other 
virtual environments are also compromised. 

The flexibility of an enterprise’s IT resources can 
be improved through virtualization because each 
virtual platform can execute a different operating 
system.  This enables, for example, a software 
development team to test its software on a variety of 
operating systems (and versions) without having to 
setup the environments on separate physical 
machines or having to install and reinstall the 
operating system on a single computer.  By utilizing 
virtualization, the team can test the different versions 
of their software on demand (simultaneously if 
required). 

The virtual environment is controlled and 
managed by software known as the hypervisor.  The 
hypervisor executes at a higher privilege level than 
the “guest” operating systems; the hypervisor can 
access any memory assigned to any guest operating 
system.  Furthermore, a guest operating system 
cannot access resources in the system (e.g., memory) 
unless permitted to do so by the hypervisor. 

The newer x86 compatible processors by Intel 
and AMD provide robust processor virtualization 
support, along with multiple execution cores.  These 
features are enabling the efficient utilization of 
virtualized platforms in realistic environments – 
further increasing the popularity of virtualization.  
However, virtualization also presents significant 
security challenges if not implemented correctly.  A 
compromised or malicious hypervisor can enable 
stealthy attacks on the entire set of applications 
executing on the computer while evading detection 
by denying or redirecting memory accesses by 
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operating system-based malware detection tools such 
a virus scanners.  Furthermore, sophisticated 
hypervisor-based malware can simply disable well-
known defense mechanisms built into operating 
systems. 

We have created an elective course at 
Mississippi State University targeted towards 
computer science and computer engineering students 
who want to gain a deeper understanding of 
virtualization beyond the material presented in the 
required OS course.  A majority of the students who 
take this course are interested in the field of 
information assurance.  As described below, this 
course also discusses how modern operating systems 
such as Windows 7 and Linux organize processes, 
virtual paged memory, interrupts, and privilege levels 
with the support of the Intel 64-bit architecture 
processors. 

This paper describes how the course is 
structured.  Section 2 introduces virtualization from 
the processor’s perspective and describes existing 
virtualization implementations.  Section 3 describes 
the prerequisite knowledge expected of students and 
the equipment and software tools required for the 
hands-on laboratory work.  Section 4 describes the 
organization of the student-developed hypervisor.  
Section 5 describes a hardware-based debugging and 
monitoring system for the hypervisor.  Section 6 
concludes with a discussion of our observations from 
the first offering of this course. 

2. Background 

The Intel 64 architecture provides virtualization 
support through extensions, referred to as VMX, to 
the instruction set and microprocessor functionality.  
These extensions enable the creating of a low-level 
layer of software, referred to as the virtual machine 
monitor (VMM) or hypervisor [1].  The hypervisor is 
responsible for partitioning the physical resources of 
the system into separate virtual machines, each 
capable of executing an independent operating 
system.  Note, Intel also implements I/O 
virtualization technology (VT-d) that is only briefly 
addressed in our course and is not discussed in this 
paper [2]. 

A number of open-source research projects 
exploring the implementation of hypervisors exist.  
One of the earliest is the Blue-Pill project by Joanna 
Rutkowska [3].  The blue pill project is primarily a 
vehicle to demonstrate how the processor’s 
virtualization features can be exploited to create 
virtually undetectable VMM-based malware.  The 
Blue-Pill project implements a thin hypervisor that 
minimizes the number of resources virtualized.  We 

have used a similar design philosophy in our course 
in order to reduce the amount of code necessary to 
explore the issues with virtualization technology in a 
classroom environment. 

The Xen Hyprvisor is an open-source 
community supported virtualization implementation 
that is intended to provide robust virtualization 
capabilities to end users [4].  Because of its 
completeness, Xen is a relatively heavy-weight 
implementation of virtualization.  Although an 
excellent tool for implementing virtualization in 
realistic environments, we found the source code for 
Xen to be unsuitable for classroom activity.  
Students, however, are encouraged to browse the 
source codes for Xen and Blue-Pill as examples of 
how to implement specific virtualization 
functionality. 

VMware is well-known commercial vendor of 
virtualization technology.  Although their source 
code is not openly available, many of our students 
utilize their software and are familiar with it.  
Furthermore, VMware releases numerous technical 
papers that describe issues and solutions that arise in 
hypervisor design (e.g., performance tradeoffs [5]). 

From the perspective of the physical processor, 
the hypervisor needs to perform the following two 
main functions (a) save and restore the state of the 
virtual processor – this includes the user-visible 
general purpose registers as well as the system 
registers (e.g., mode control registers, memory 
management unit’s registers and the interrupt 
controller’s registers).  Essentially, whenever a guest 
operating system accesses these registers or executes 
any instruction that updates the system’s state or 
reports on important system state, the processor, 
instead of executing the instruction, invokes the 
hypervisor.  The hypervisor emulates the execution 
of the instruction, storing the results in appropriate 
general purpose registers, if required (i.e., any 
changes to the general purpose registers expected 
from the normal execution of the instruction are 
reported back to the guest environment in the guest’s 
general purpose registers).  The hypervisor then 
resumes execution of the guest at the point after the 
instruction that caused the hypervisor to be invoked 
(see figure 1). 

Volume 3, System Programming Guide in the 
Intel® 64 and IA-32 Architectures Software 
Developer’s Manual series [6] describes the 
processor’s VMX technology in detail.  Volume 2: 
Instruction Set Reference [7] describes the VMX 
instructions.  In addition, students need to have a 
basic understanding of interrupt handling, protected 
mode paged memory management, and processor 
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privilege levels.  Much of this information is 
provided in Volume 3, System Programming Guide. 

It is important to note that although we chose to 
target the 64-bit Windows 7 operating system as the 
guest of our hypervisor implementation, we did not 
need to know the internal implementation details for 
Windows 7.  We were able to read processor state in 
order to determine just enough information to 
successfully enable a hypervisor for Windows 7 
without having to patch any system binaries.  This is 
a critical observation because the source code for 
Windows is proprietary, making patching difficult.  
Furthermore, we wanted to develop a hypervisor that 
is portable to any operating system with minimal 
effort. 

 

 
Figure 1: Organization of operating systems 

in a virtualized environment 

3. Course Environment 

The course is a split-level course, open to 
undergraduate and graduate students who have taken 
an operating systems course at least at the 
undergraduate level.  They need to have a 
fundamental understanding of how hardware and 
operating system software interacts in order to 
provide paged-mode memory isolation to processes.  
The Intel 64 architecture-specific paged memory 
implementation details are reviewed as part of this 
course on virtualization.  Students are also expected 
to be proficient C programmers and have some 
experience with assembly language.  However, the 

use of x86 assembly language is minimized in this 
course (we provide much of the assembly language 
code to the students in advance).  Students are able to 
learn sufficient assembly language in order to modify 
supplied code and to contribute small functions 
where needed. 

Most of the code developed and studied in this 
course is written in C.  Because we chose Windows 7 
as the target operating systems environment for this 
course, we use Microsoft’s C compiler included in 
the latest version of the device driver kit (DDK) for 
code development.  This compiler provides a number 
of intrinsic functions corresponding to specific 
processor instructions.  However, we chose to 
develop and provide to the students a library of 
functions written in assembly language in order give 
students a better idea of how the instructions are 
used.  This technique does not result in the most 
efficient code because of the function call/return 
overheads that can be optimized away by the 
compiler when intrinsic functions are used instead.  
However, by writing a separate library, we are not 
dependent on extensions to the C language provided 
by any specific compiler vendor. 

We chose to use the Netwide Assembler (NASM) 
for assembling our x86 assembly language source 
code into an object file that is linked into our driver 
executable [8].  NASM is a free assembler that 
supports the complete IA-32 and Intel 64 instruction 
set.  NASM also requires programmers to use a 
relatively unambiguous syntax with minimal use of 
directives as compared to Microsoft’s assembler 
(MASM) which is included in the Windows DDK.  
Another advantage of NASM over several other 
assemblers is that is can also be used in Linux 
environments. 

We use the device driver kit to implement a 
simple kernel mode device driver that inserts our 
hypervisor into the Windows 7 environment.  The 
device driver is needed because instructions 
necessary to begin the execution of the hypervisor are 
privileged (i.e., they require the processor to be in 
kernel mode), and therefore, cannot be executed 
directly by a user-level application. 

Using a device driver for delivering a hypervisor 
adds some complexity to the laboratory environment 
because Windows 7 requires drivers to be signed 
before it executes them.  Therefore, we need to create 
a test certificate, self-sign the device driver using the 
test certificate, and instruct windows to execute 
drivers with self-signed certificates.  Windows will 
only execute drivers with self-signed certificates 
when it is in test mode which is enabled by issuing 
the command “bcdedit.exe -set TESTSIGNING 
ON” and then rebooting the system.  When Windows 7 
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boots in the test mode, the text “Test Mode” appears 
at the bottom right corner in the background of the 
main screen. 

Students need to use two separate computer 
systems for the hands-on laboratory exercises.  One 
system, designated as the development system, is 
dedicated to code development and compiling – it is 
not used for testing the driver and the hypervisor.  In 
most cases, students chose to use their personal 
laptops as the development system.  This computer 
can run either windows 7 or 32-bit windows XP (we 
had no issues cross-compiling 64-bit device driver 
code for Windows 7 on a development system 
running 32-bit Windows XP).  The second computer, 
designated as the test system, needs to be running 64-
bit Windows 7 and have a processor that supports 
VMX.  In our laboratory, we constructed the test 
computer using Intel’s LA1155 chipset and the i7-
2600 processor (Sandy Bridge). The VMX 
functionality was enabled in the BIOS of the test 
machine.  A folder on the test machine was mapped 
onto the development machine over the network in 
order to facilitate the delivery of new versions of the 
device drivers to the test machine. 

We developed a number of scripts to help 
generate test certificates, compile and self-sign the 
drivers, transport the driver to the test system, and to 
startup the driver.  We also installed Microsoft’s 
DebugView tool on the test system [9].  DebugView 
is used for displaying kernel-mode and Win32 debug 
output generated by the kernel and device drivers.  
We found that the liberal use of debugging output 
statements was, in many cases, easier than using a 
kernel-mode debugger. 

4. Structure of the Hypervisor 

This section discusses how the device driver is 
used for inserting the hypervisor layer below the 
operating system, how the hypervisor is structured in 
order to enable students to do a majority of the code 
in C, and how the hypervisor interacts with the guest 
operating system. 

4.1. The Device Driver 

A full discussion on writing device drivers is 
beyond the scope of this paper; we describe the 
salient points relevant to the delivery of the 
hypervisor and how it can be used to help with 
debugging and monitoring the hypervisor during 
development. 

Device drivers based on the Windows Driver  
Model (WDM) architecture are characterized by six 
functions DriverEntry(), DriverUnload(), 

DispatchCreate(), DispatchClose(), DispatchWrite(), 
and DispatchRead(); and one data structure, the 
DeviceExtension. 

The DeviceExtension structure holds data that 
uniquely describes the state of this instance of the 
driver and establishes the context of the driver 
instance.  The DeviceExtension structure contains 
fields mandated by the WDM architecture and other 
fields unique to the driver.  We added fields 
containing pointers to important hypervisor data 
structures and debugging areas to the 
DeviceExtension for our driver.  These data 
structures are described in more detail below. 

The CreateDevice() function is called once 
during the lifetime of the device driver when it is first 
loaded by the system; it can be thought of as the 
“main()” function of the driver.  This function 
requests Windows to setup the driver’s instance and 
to allocate space for the DeviceExtension.  It also sets 
up the pointers to the other five characteristic 
functions in the DeviceExtension so they can be 
called by the operating systems when needed (the 
WDM architecture uses an event-driven 
programming model for device drivers).  The 
function also establishes a symbolic name that user 
mode applications can use to connect to the device 
driver and informs Windows that the device driver 
will not use buffered I/O (i.e., the driver will directly 
access the user-space memory in the application 
when the application makes read/write requests to the 
driver). 

The DriverUnload() function is called when the 
driver is exited; it frees any memory allocated by the 
driver that has not already been released back to the 
operating system and deletes the symbolic link. 

The DispatchCreate() function is called when an 
application opens a connection to the driver via the 
CreateFile() Windows function.  In DispatchCreate(), 
we allocate a page (naturally aligned 4-Kbytes) of 
memory for each of the following regions required by 
the processor to support virtualization: (a) the 
VMXON region, (b) the virtual machine control 
structure (VMCS), and (c) the MSR bitmap.  The 
function also allocates two 64-Kbyte areas of 
physically contiguous memory, one for the 
hypervisor’s stack and another to hold general-
purpose debugging information to assist in the 
hypervisor’s development. 

The DispatchClose() function is called when the 
application closes its connection to the device driver.  
This function ensures that the hypervisor has been 
terminated properly and frees all hypervisor-related 
memory regions (e.g., VMXON region, VMCS, 
stack, and debugging). 
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The DispatchRead() and DispatchWrite() 
functions are called then the user application calls 
FileRead() and FileWrite() Windows functions, 
respectively.  Other than the direction of the data 
transfer expected by Windows, these functions are 
essentially identical.  Because the driver can directly 
accessing the user’s buffers, the driver can read and 
write from/to the buffer in both functions.  Therefore, 
we can program a user-level application to write 
“commands” and their parameters into the I/O buffer.  
The device driver, in the DispatchRead() and 
DispatchWrite() functions, can interpret the 
commands, execute the actions requested, and write 
the results into the buffer.  When the FileRead() and 
FileWrite() completes, the application can read and 
display the results reported back in the buffer. 

This arrangement where the device driver acts as 
the application’s kernel-mode surrogate enables the 
user application to perform privileged activities, such 
as installing and testing the hypervisor.  We use only 
the DispatchRead() function to control the device 
driver in this course.  However, students are free to 
use either function as they see fit.  The user 
application requests the installation and removal of 
the hypervisor using this mechanism. 

4.2. The Hypervisor 

When the DispatchRead() function receives the 
command to install the hypervisor, it initializes the 
VMXON region and the VMCS.  Initialization of the 
VMXON region is straightforward; it only involves 
clearing the memory and writing the VMX version 
information leaded from a machine-specific register 
(MSR) at a specific location in the VMXON region. 

Initialization of the VMCS is more complex 
because it establishes the contexts of the hypervisor 
(the host) and the virtual machine in which the 
operating system (the guest) is executing. 

One of the overarching goals of this course was 
to minimize the amount of coding required by the 
students so that they could focus on the virtualization 
concepts rather than spend large amounts of time 
setting up virtual machine contexts.  Therefore, we 
designed our hypervisor development laboratory 
assignments along the lines of the Blue-Pill project 
such that the hypervisor monitors the smallest 
possible subset of processor status.  Additional 
monitoring and control functionality is added as 
required for advanced experiments.  This means that 
the operating system continues to control all aspects 
of the computer such as memory management 
(including paging and virtual memory), I/O, and 
interrupt handling.  Note that the operating system is 
unaware of the existence of the hypervisor and the 

hypervisor is invoked asynchronously by the 
processor in response to certain events.  Therefore, 
the hypervisor’s code and data is stored in locked 
(i.e., immovable, always resident) areas of memory. 

The VMCS contains the following three broad 
types of fields: (a) control, (b) guest state, and (c) 
host (i.e., hypervisor’s) state.  The control fields are 
used by the hypervisor to define the events that cause 
the physical processor to stop the execution of the 
virtual machine and return control to the hypervisor.  
These fields also provide information to the 
hypervisor as to the reason why the hypervisor is 
being invoked (e.g., which instruction caused the 
virtual machine to exit, the instruction’s length, and 
which registers are affected).  This information can 
be used by the hypervisor to emulate the execution of 
the instruction/event and resume the execution of the 
virtual machine. 

The guest state fields hold the contents of the 
control, descriptor, and segment registers that are 
loaded into the virtual processor when the guest code 
begins or resumes execution.  The hypervisor 
initializes these fields to setup a new virtual machine 
and the physical processor stores the contents of the 
virtual processor’s control registers back into these 
fields when the virtual machine execution stops and 
control is returned to the hypervisor.  The hypervisor 
can then modify these registers as needed in order to 
emulate the execution of the instruction or event that 
cause the hypervisor to be invoked before resuming 
the execution of the virtual machine.  Interestingly, 
the general-purpose, floating point, and MMX and 
XMM registers are not saved automatically and must 
be saved and restored by the hypervisor if they are 
modified in the hypervisor.  This is the same 
behavior required by interrupt handlers.  Note that the 
hypervisor may need to modify the content of some 
general purpose registers in order to reflect the result 
of emulating an instruction/event back to the virtual 
machine. 

During course development, the process of 
establishing the control register context for a virtual 
machine capable of executing Windows 7 appeared 
to be a significant challenge until we realized that we 
could simply reflect the current control register 
context into the guest state fields in the VMCS; our 
device driver is running in kernel-mode as part of 
Windows 7 when the DispatchRead() function is 
called.  This means that the current content of the 
control registers are correct for continued execution 
of the operating system within a virtual machine.  
Therefore, we query and write the contents of the 
various control registers to the corresponding host 
state fields in the VMCS. 
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The host state fields contain the processor 
context that should be loaded into the control and 
segment registers when the hypervisor is executed.  
For our initial implementation of a thin hypervisor, 
we chose to setup the control register context to be 
identical to that of Windows 7.  This kept us from 
having to setup a separate paged memory 
infrastructure; saving us considerable virtual memory 
design and programming effort. 

Figure 2 depicts the organization of the 
hypervisor code and its control flow at a high level.  
Hypervisor setup begins when the device driver’s 
DispatchRead() function receives the command to 
install the hypervisor.  The DispatchRead() function 
calls several utility functions written in assembly 
language to enable VMX operations and to initialize 

the VMXON region and the VMCS.  The guest and 
host instruction pointer fields in the VMCS are filled 
with the addresses of the instructions following the 
VMGuest and VMHost assembly language labels, 
respectively.  These labels are exported by NASM 
and the linker sets up the correct values when all the 
component object files are linked together into the 
driver’s executable file.  After the VMCS is setup, 
the DispatchRead function calls the VM_Launch() 
function written in assembly language.  VM_Launch 
writes the current stack pointer value into the guest’s 
stack pointer field in the VMCS and then issues the 
VMLAUNCH instruction. 

If the VMLUANCH succeeds, the virtual 
processor begins execution by loading the context 
from control context from the VMCS – essentially 

Figure 2: Hypervisor Code organization and Control Flow 

Assembly Language Code C Language Code / Operating System 
Utility functions called by the C code to 
read/write registers, VMCS fields, and 
enable VMX operations (e.g., ReadMSR, 
WriteMSR,  GetGDTR, CPUID, GetCR0, 
SetCR0, VMXOn, VMXOff) 

Note: for clarity, calls and returns to the 
code in this block are not shown using 
arrows 

DispatchRead() (Start Here) 
1) Enable VMX ops; 
2) Setup VMCS; 
3) Write the address of the VMGuest label as 

the address of the guest in the VMCS; 
4) Write the address of the VMHost label as 

the address of the host in the VMCS; 
5) Call VM_Launch(); 
9) Return success or failure code to the user-

level application; 
VM_Launch 
6) Write the current stack pointer as the 

guest’s stack pointer in the VMCS; 
7) Issue the VMLAUNCH instruction; 
// The EFlags register settings contain  
//    launch failure or success codes. 
// If VM Launch succeeds, this code is 
//    now executing in a VM. 
VMGuest: 
8) Read EFlags and return to caller 

VMHost 
12) Write the GPRs to the stack; 
13) Setup a C friendly stack frame; 
14) Call HostCallback() passing it the 

address of the area containing        the 
GPRs; 

21) When HostCallback() returns, reload 
the GPRs from the stack; 

22) Issue the VMRESUME instruction  
(this will resume VM execution); 

OS Code (Language Independent) 
10)  … // other OS/user code 
11) The OS issues an instruction that causes 

the host to activate (e.g., CPUID); 
23) The OS resumes execution here; 

(e.g., use values returned by CPUID) 
24)  … // other OS/user code 

HostCallback() (C-based hypervisor code) 
15) Determine the cause for the hypervisor to 

execute; 
16) If unhandled reason then produce BSOD; 
17) If handled reason, emulate instruction; 
18) Update GPR contents using the address 

passed into this function by VMHost; 
19) Update the guest’s instruction pointer to 

skip over the instruction that caused the 
host to execute (if applicable). 

20) Return 
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leaving the control registers unchanged (because they 
have been setup in the VMCS to have the same 
values they have currently).  The virtual machine 
starts executing at the instruction following the 
VMGuest assembly language label.  This code reads 
the EFlags register which contains the success/failure 
flag settings resulting from the execution of 
VMLAUNCH instruction and returns these values 
back to the DispatchRead() function.  If 
VMLAUNCH fails, the virtual machine does not 
execute.  However, the physical processor continues 
executing the instructions following the 
VMLAUNCH instructions – these are the same as 
above, returning the content of EFlags to 
DispatchRead().  When control returns to 
DispatchRead(), the function examines the return 
value in order to determine whether or not the virtual 
machine launch was successful (and whether or not it 
is now running in a virtual machine). 

Once the virtual machine is running and the 
driver returns control back to the operating system, 
the host code is only invoked when certain 
instructions are called or any events specified in the 
VMCS control fields occur.  The host always begins 
execution at the instruction following the VMHost 
label.  This assembly language code saves the content 
of the general purpose registers onto the host’s stack 
(the stack pointer register is automatically loaded by 
the processor from the VMCS when the host begins 
execution).  The code also sets up a C-language 
friendly stack frame before calling the 
HostCallback() function written in C. 

Microsoft describes the 64-bit C/C++ and 
assembly language application binary interface (ABI) 
in the Microsoft Software Developer Network 
(MSDN) documentation online [10].  According to 
the ABI, 64-bit return codes are returned in the RAX 
register.  Parameters P1, P2, …, Pn are passed to 
functions from left to right order, P1 in register RCX, 
P2 in register RDX, P3 in register R8, P4 in register 
R9, and P5 through Pn on the stack.  Space for the 
first 4 parameters is also reserved on the stack so that 
the compiler/assembly language programmer can 
save their contents if needed.  The caller sets up and 
cleans up the stack.  Registers RDI, RSI, RBX, RBP, 
and R12-R15 must be preserved by the called 
function (i.e., our assembly language functions).  
Figure 3 depicts the layout for the stack when the 
HostCallback C function is called by the assembly 
language host code. 

 

4.3. Debugging the Hypervisor 

During the initial development phase of the 
hypervisor, we were plagued by frequent kernel 
crashes known as the “blue screen of death” (BSOD).  
These BSOD events were caused because of bugs in 
the setup of the VMCS fields.  It is difficult to debug 
some of these events because the BSOD immediately 
replaces any debugging output captured and 
displayed by the DebugView tool and our user-level 
application.  Sometimes, the test computer would 
freeze before the debugging information was 
displayed.  Because these BSODs were caused by 
incorrect setup of the control registers, a kernel 
debugger also could not be used effectively because 
the kernel was unstable. 

Our initial solution to this debugging problem 
was to use the PC speaker peripheral to produce tones 
of varying frequency to indicate progress made by 
our hypervisor code after the virtual machine launch 
was initiated.   The PC speaker peripheral is a very 
simple device existing on the I/O bus that only 
requires about nine assembly instructions to produce 
a tone from the speaker.  By embedding tone 
producing codes of different frequencies at strategic 
points in our code, we were able to discern whether 
or not the VMLAUNCH instruction was successful 

This area is above our 
stack 

Space for 15 64-bit 
words for storing rax, 
rbx, rcx, rdx, rdi, rsi, 

rbp, and r8-r15 in  
bottom-up order 

Space for the four 
potential parameters 

when HostCallback() is 
called (i.e., rcx, rdx, r8, 

and r9 in bottom-up 
order)

Return Address 

This space will be used 
by HostCallback and 

other C functions that it 
calls 

(1) The stack 
pointer points 
here when the 

host begins 
execution (the 
stack grows 
downwards) 

(3) The stack 
pointer points 

here when 
HostCallback 

is called 

(2) The stack 
pointer points 
here after the 

C-friendly 
stack is setup 

Figure 3: Stack Layout for the Host Code 
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and if our host code and HostCallback() functions 
were being called properly. 
 

The system became stable once we corrected the 
VMCS setup errors.  We are now able to debug the 
hypervisor code using conventional means.  For 
example, we make extensive use of the KdPrint() 
macro to send kernel-level debugging output to be 
viewed by the DebugView tool.  We also produce our 
own BSODs for certain conditions (e.g., unhandled 
reasons for hypervisor invocation – we clearly cannot 
return to the operating system without reacting to the 
event/instruction that caused the hypervisor to 
execute). 

Furthermore, because our hypervisor’s context is 
largely the same as Windows’ context, we found that 
we could successfully use the KdPrint() macro from 
within our hypervisor code (even though the 
hypervisor is invoked asynchronously).  Clearly, 
calling operating system functions from within the 
hypervisor is inadvisable because doing so may 
disrupt the current internal state of the operating 
system.  What we need is a simple persistent storage 
device that can be accessed simply without requiring 
complex device driver software because we should 
not use Windows drivers from within the hypervisor.  
Our test computer does not have a traditional serial 
(COM) port (i.e., only USB ports exist on this 
computer).  Programming the USB or Ethernet 
devices provided on the motherboard was too 
complex to be considered as a serious alternative.  
These constraints led us to begin using an FPGA-
based peripheral device as a debugging aid that 
proved to be of great benefit during the initial 
development and testing of the hypervisor.  This 
device is described in Section 5 below. 

4.3. Hypervisor-based Key Logger 

After the students completed a stable 
implementation of the basic hypervisor, we asked 
them to incorporate key logging functionality into the 
hypervisor for a legacy PS2 (i.e., non-USB) 
keyboard.  PS2 keyboards are easier to deal with than 
USB keyboards because their legacy interrupts and 
control mechanisms are well documented.  However, 
handling external interrupts adds complexity to the 
hypervisor because it now needs to respond to 
interrupts and perform advanced I/O operations.  
Enabling interrupt handling in the hypervisor is 
enabled by setting the appropriate fields in the 
VMCS.  Doing so causes the hypervisor to be 
activated when an external keyboard interrupt is 
issued, instead of the guest operating system’s 
keyboard interrupt handler.  The guest will never 

receive any external keyboard interrupts unless the 
hypervisor passes the interrupt along to the virtual 
processor using the event injection VMX 
functionality when the guest execution is resumed. 

Setting up event injection fields in the VMCS is 
relatively straightforward; the hypervisor simply 
copies information related to the interrupt into the 
event injection fields in the VMCS.  However, the 
hypervisor should pass along interrupts only when 
the guest is ready to process interrupts (i.e., the guest 
has not disabled interrupts on the virtual processor).  
If the guest has disabled interrupts, the hypervisor 
needs to queue the interrupt events and play them 
back when the guest is able to accept interrupts. 

In order to detect when the guest re-enables 
interrupts, the hypervisor sets fields in the VMCS to 
capture the enabling of interrupts by the guest.  When 
the hypervisor is invoked because the guest has just 
enabled interrupts and there are external interrupts in 
the interrupt queue maintained by the hypervisor, the 
hypervisor removes the first interrupt in the queue 
and injects a corresponding event into the guest’s 
execution. 

We encountered another interesting problem 
when capturing keystrokes.  Keystroke information is 
consumed when read from the keyboard controller, 
and therefore is no longer available to be read by the 
guest operating system’s keyboard interrupt handler.  
Fortunately, it is possible to program the keyboard 
controller to replay an arbitrary keystroke; our 
hypervisor exploited this functionality to setup the 
keyboard to replay the keystroke recorded along with 
the interrupt information on the keystroke queue 
when the event is injected into the guest’s execution. 

Logged keyboard make (i.e., press) and break 
(i.e., release) keyboard scan codes are stored in a 
buffer and reported using the KdPrint() macro.  The 
content of the buffer can also be reported by our 
hypervisor driver to the hypervisor control user 
application on demand.  This reporting can be easily 
accomplished because the hypervisor’s keystroke 
buffer is located in the general-purpose buffer 
allocated by the driver during initialization, and 
therefore, is accessible by the driver and the 
hypervisor simultaneously. 

5. Peripheral-based Hypervisor 
Debugging 

We had previously developed an FPGA-based 
PCIe peripheral device for another research project 
using the low cost Virtex-5 OpenSPARC Evaluation 
Platform from Digilent Inc [11].  Our PCIe 
implementation presents two memory mapped 
regions to the test computer.  The first memory 
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region corresponds to 16 32-bit control registers on 
the FPGA implementation.  The second region 
corresponds to a 64-Kbyte storage area on the FPGA.  
Upon starting up, our hypervisor device driver 
queries the physical base addresses of these two 
memory regions and requests Windows to setup page 
table entries that allows the driver to access the 
memories using logical addresses by using the 
MmMapIoSpace() kernel call.  Once the logical 
addresses are available, the driver and the hypervisor 
can readily access these memory areas via normal 
pointer dereference operations. 

We use the FPGA to store trace and debugging 
information in the second memory region.  
Essentially, we create formatted execution trace 
strings similar to those created by the KdPrint() 
macro and write them onto FPGA’s memory.  By 
incrementing the buffer pointer after every write 
operation, we can keep track of guest and host 
execution in real-time.  Furthermore, because the 
FPGA is supplied by an external power source, 
independent of the host computer, the FPGA’s 
memory storage is persistent across host computer 
boot events.  This important fact enables us to 
perform post mortem analysis of the trace after we 
reboot the test system following a BSOD or system 
lockup event.  This important capability is not 
available in standard RAM on our computer which 
was cleared on all reboot events (including warm 
reboots). 

An additional feature of the FPGA-based device 
is that it is capable of direct memory access (DMA) 
operations over the PCIe bus.  DMA operations are 
programmed and initiated by writing the physical 
addresses of the target memory on the host computer, 
transfer sizes, and transfer direction (i.e., read or 
write) into the FPGA implementation’s control 
registers.  DMA allows us to copy large portions of 
host memory into the FPGA for offline analysis 
asynchronously from the physical (and therefore the 
virtual processors).  Although we did not use this 
feature in this course, it is available if there is any 
need for performing asynchronous real-time 
monitoring of the hypervisor.  This is a course option 
we will seriously considering including in future 
course offerings. 

6. Discussion and Conclusions 

We offered this course in the spring 2011 to a 
small group of five motivated undergraduates.  
Students were asked to program individually while 
designing collaboratively.  Our goal was to foster 
individual software development effort while 
simultaneously encouraging an exchange of ideas.  A 

secondary goal was to reduce what can appear to be 
an overwhelming amount of design work and 
technical reading required to design and implement a 
hypervisor.  All students, except for one who had 
time management issues with all of his courses, 
produced exemplary results. 

6.1. Lessons Learned 

During our first offering of the course, we made 
several observations that will lead to improvements 
for our subsequent offerings.  These observations are 
summarized below. 

We spent a considerable amount of time at the 
beginning of the semester going over the design of 
the device driver.  Much of this discussion is not 
necessary for the purpose of the hypervisor 
development.  Also, the students can pick up this 
material by reading the code themselves and by 
following excellent tutorials online describing how to 
write WDK architecture device drivers. 

Another large period of time was spent by 
students in debugging the VMCS setup.  Now that we 
have identified, through experience, the sources of 
most VMCS setup errors, we can point out the 
potential for these errors to the students.  Also, 
teaching the student effective debugging skills using 
offline storage, providing fragments of prewritten 
code (e.g., the VMLaunch function) can significantly 
reduce the time spent by students in implementation 
and debugging.  Many students stated that doing this 
work was immensely rewarding.  However, we were 
set back at least three weeks because of VMCS 
debugging issues and device driver design 
discussions.  This time can be better spent discussing 
other issues such as the following: (a) how to design 
memory protection for the hypervisor so that it is 
completely isolated from the guest environment, (b) 
how to design a hypervisor to support more than one 
guest on at the same time, (c) design issues related to 
distributed hypervisors (on our current test computer 
we disable all but one core in our multi-core i7 
processor when Windows 7 boots), and (d) how to 
handle nested hypervisors. 

The key-logging implementation, although 
seemingly straightforward in appearance posed 
several challenges.  The issue of destructive reads 
from the keyboard controller has already been 
discussed previously.  Our initial design for the key 
logger was to simply ignore interrupts and all the 
problems associated with event injections.  Instead, 
we chose setup fields in the VMCS to intercept I/O 
operations (i.e., the IN and OUT) instructions that 
target the keyboard ports.  However, this technique 
did not work because in modern chipsets, the 
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keyboard controller is also presented at a memory 
mapped location and the Windows 7 keyboard driver 
uses the memory mapped addressed of the keyboard 
controller’s registers as opposed to the I/O bus 
mappings.  Therefore, our I/O event traps were never 
triggered. 

As virtualization becomes increasingly popular, 
there are a number of well-written technical research 
papers becoming available (e.g., on the VMware 
website).  Advanced undergraduate and graduate 
students can develop some these ideas into 
publishable projects and should be encouraged to do 
so.  A specific area of interest we have is to study the 
impact of hypervisor execution overheads on the 
runtime performance of applications running on 
virtualized platforms.   

6.2. Future Expansion 

One specific area of interest that we were not 
able to cover in our initial course offering is how to 
virtualize the physical memory in the system such 
that the guest operating system is completely isolated 
from the hypervisor and other potential guests.  
Chapter 28 in Volume 3B, System Programming 
Guide, Part 2 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual series 
describes in detail how this can be accomplished.  
This is a complex task and will require considerable 
design and development effort in advance of our next 
offering of the course. 

Another important topic to consider including in 
this course is a discussion and implementation of a 
hypervisor that utilizes Intel’s VX-d technology to 
virtualize the I/O capabilities of the chipset.  I/O 
virtualization, if implemented properly, has the 
potential to prevent attacks on the system from 
malicious functionality embedded in the firmware 
and/or logic of peripheral devices. 
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