
Teaching Hypervisor Design, Implementation, and Control to Undergraduate
Computer Science and Computer Engineering Students

Yoginder S. Dandass

Mississippi State University
yogi@cse.msstate.edu

Samuel T. Shannon
Mississippi State University

yogi@cse.msstate.edu

David A. Dampier
Mississippi State University

yogi@cse.msstate.edu

Abstract
The study of design issues and implementation

techniques for hypervisors is becoming an
increasingly important aspect of operating systems
pedagogy. There is a demand for students, especially
in the field of information assurance, who understand
the security issues exposed by the improper use of
virtualization functionality provided by modern
processors and how virtualization can be exploited to
improve system security. Furthermore, students need
to understand the process isolation vs. performance
tradeoffs that must be made when designing
hypervisors.

This paper describes the experience of the
authors in teaching a single-semester course to
undergraduate students in designing, implementing,
and debugging a hypervisor for an Intel 64
processor. Advanced topics in the course include
how to capture and manage I/O and interrupt events
in the hypervisor. The paper also discusses the use of
a PCIe-based hardware module for monitoring and
debugging the hypervisor implementation.

1. Introduction

In current information technology (IT) parlance,
virtualization refers to the ability to partition the
hardware resources of a system such that each
partition appears to be a complete hardware platform
that can execute an operating system and applications
independently from the operating system and
applications executing concurrently within other such
partitions. Virtualization is becoming an increasingly
popular feature implemented in the IT infrastructure
of industrial, commercial, and academic enterprises
because of a number of benefits including cost
reduction, application security, and flexibility.

The potential for cost reduction is the main
reason driving the popularity of virtualization today.
By consolidating servers dedicated to several
different applications onto a single physical computer
supporting multiple virtual servers, enterprises can
reduce the number of physical computers that must
be acquired with concomitant savings in power

supply, cooling, space, and maintenance costs. The
energy savings also translates into goodwill that an
enterprise can generate by appearing to be “green”
(i.e., by being environmentally friendly).

The ability to execute an application in its own
dedicated virtualized processor and operating system
environment has the potential for improving the
security of application. Because each application
runs in isolation, a single compromised application or
operating system environment does not necessarily
mean that all the applications executing on other
virtual environments are also compromised.

The flexibility of an enterprise’s IT resources can
be improved through virtualization because each
virtual platform can execute a different operating
system. This enables, for example, a software
development team to test its software on a variety of
operating systems (and versions) without having to
setup the environments on separate physical
machines or having to install and reinstall the
operating system on a single computer. By utilizing
virtualization, the team can test the different versions
of their software on demand (simultaneously if
required).

The virtual environment is controlled and
managed by software known as the hypervisor. The
hypervisor executes at a higher privilege level than
the “guest” operating systems; the hypervisor can
access any memory assigned to any guest operating
system. Furthermore, a guest operating system
cannot access resources in the system (e.g., memory)
unless permitted to do so by the hypervisor.

The newer x86 compatible processors by Intel
and AMD provide robust processor virtualization
support, along with multiple execution cores. These
features are enabling the efficient utilization of
virtualized platforms in realistic environments –
further increasing the popularity of virtualization.
However, virtualization also presents significant
security challenges if not implemented correctly. A
compromised or malicious hypervisor can enable
stealthy attacks on the entire set of applications
executing on the computer while evading detection
by denying or redirecting memory accesses by

2012 45th Hawaii International Conference on System Sciences

978-0-7695-4525-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2012.554

5613

2012 45th Hawaii International Conference on System Sciences

978-0-7695-4525-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2012.554

5613

operating system-based malware detection tools such
a virus scanners. Furthermore, sophisticated
hypervisor-based malware can simply disable well-
known defense mechanisms built into operating
systems.

We have created an elective course at
Mississippi State University targeted towards
computer science and computer engineering students
who want to gain a deeper understanding of
virtualization beyond the material presented in the
required OS course. A majority of the students who
take this course are interested in the field of
information assurance. As described below, this
course also discusses how modern operating systems
such as Windows 7 and Linux organize processes,
virtual paged memory, interrupts, and privilege levels
with the support of the Intel 64-bit architecture
processors.

This paper describes how the course is
structured. Section 2 introduces virtualization from
the processor’s perspective and describes existing
virtualization implementations. Section 3 describes
the prerequisite knowledge expected of students and
the equipment and software tools required for the
hands-on laboratory work. Section 4 describes the
organization of the student-developed hypervisor.
Section 5 describes a hardware-based debugging and
monitoring system for the hypervisor. Section 6
concludes with a discussion of our observations from
the first offering of this course.

2. Background

The Intel 64 architecture provides virtualization
support through extensions, referred to as VMX, to
the instruction set and microprocessor functionality.
These extensions enable the creating of a low-level
layer of software, referred to as the virtual machine
monitor (VMM) or hypervisor [1]. The hypervisor is
responsible for partitioning the physical resources of
the system into separate virtual machines, each
capable of executing an independent operating
system. Note, Intel also implements I/O
virtualization technology (VT-d) that is only briefly
addressed in our course and is not discussed in this
paper [2].

A number of open-source research projects
exploring the implementation of hypervisors exist.
One of the earliest is the Blue-Pill project by Joanna
Rutkowska [3]. The blue pill project is primarily a
vehicle to demonstrate how the processor’s
virtualization features can be exploited to create
virtually undetectable VMM-based malware. The
Blue-Pill project implements a thin hypervisor that
minimizes the number of resources virtualized. We

have used a similar design philosophy in our course
in order to reduce the amount of code necessary to
explore the issues with virtualization technology in a
classroom environment.

The Xen Hyprvisor is an open-source
community supported virtualization implementation
that is intended to provide robust virtualization
capabilities to end users [4]. Because of its
completeness, Xen is a relatively heavy-weight
implementation of virtualization. Although an
excellent tool for implementing virtualization in
realistic environments, we found the source code for
Xen to be unsuitable for classroom activity.
Students, however, are encouraged to browse the
source codes for Xen and Blue-Pill as examples of
how to implement specific virtualization
functionality.

VMware is well-known commercial vendor of
virtualization technology. Although their source
code is not openly available, many of our students
utilize their software and are familiar with it.
Furthermore, VMware releases numerous technical
papers that describe issues and solutions that arise in
hypervisor design (e.g., performance tradeoffs [5]).

From the perspective of the physical processor,
the hypervisor needs to perform the following two
main functions (a) save and restore the state of the
virtual processor – this includes the user-visible
general purpose registers as well as the system
registers (e.g., mode control registers, memory
management unit’s registers and the interrupt
controller’s registers). Essentially, whenever a guest
operating system accesses these registers or executes
any instruction that updates the system’s state or
reports on important system state, the processor,
instead of executing the instruction, invokes the
hypervisor. The hypervisor emulates the execution
of the instruction, storing the results in appropriate
general purpose registers, if required (i.e., any
changes to the general purpose registers expected
from the normal execution of the instruction are
reported back to the guest environment in the guest’s
general purpose registers). The hypervisor then
resumes execution of the guest at the point after the
instruction that caused the hypervisor to be invoked
(see figure 1).

Volume 3, System Programming Guide in the
Intel® 64 and IA-32 Architectures Software
Developer’s Manual series [6] describes the
processor’s VMX technology in detail. Volume 2:
Instruction Set Reference [7] describes the VMX
instructions. In addition, students need to have a
basic understanding of interrupt handling, protected
mode paged memory management, and processor

56145614

privilege levels. Much of this information is
provided in Volume 3, System Programming Guide.

It is important to note that although we chose to
target the 64-bit Windows 7 operating system as the
guest of our hypervisor implementation, we did not
need to know the internal implementation details for
Windows 7. We were able to read processor state in
order to determine just enough information to
successfully enable a hypervisor for Windows 7
without having to patch any system binaries. This is
a critical observation because the source code for
Windows is proprietary, making patching difficult.
Furthermore, we wanted to develop a hypervisor that
is portable to any operating system with minimal
effort.

Figure 1: Organization of operating systems

in a virtualized environment

3. Course Environment

The course is a split-level course, open to
undergraduate and graduate students who have taken
an operating systems course at least at the
undergraduate level. They need to have a
fundamental understanding of how hardware and
operating system software interacts in order to
provide paged-mode memory isolation to processes.
The Intel 64 architecture-specific paged memory
implementation details are reviewed as part of this
course on virtualization. Students are also expected
to be proficient C programmers and have some
experience with assembly language. However, the

use of x86 assembly language is minimized in this
course (we provide much of the assembly language
code to the students in advance). Students are able to
learn sufficient assembly language in order to modify
supplied code and to contribute small functions
where needed.

Most of the code developed and studied in this
course is written in C. Because we chose Windows 7
as the target operating systems environment for this
course, we use Microsoft’s C compiler included in
the latest version of the device driver kit (DDK) for
code development. This compiler provides a number
of intrinsic functions corresponding to specific
processor instructions. However, we chose to
develop and provide to the students a library of
functions written in assembly language in order give
students a better idea of how the instructions are
used. This technique does not result in the most
efficient code because of the function call/return
overheads that can be optimized away by the
compiler when intrinsic functions are used instead.
However, by writing a separate library, we are not
dependent on extensions to the C language provided
by any specific compiler vendor.

We chose to use the Netwide Assembler (NASM)
for assembling our x86 assembly language source
code into an object file that is linked into our driver
executable [8]. NASM is a free assembler that
supports the complete IA-32 and Intel 64 instruction
set. NASM also requires programmers to use a
relatively unambiguous syntax with minimal use of
directives as compared to Microsoft’s assembler
(MASM) which is included in the Windows DDK.
Another advantage of NASM over several other
assemblers is that is can also be used in Linux
environments.

We use the device driver kit to implement a
simple kernel mode device driver that inserts our
hypervisor into the Windows 7 environment. The
device driver is needed because instructions
necessary to begin the execution of the hypervisor are
privileged (i.e., they require the processor to be in
kernel mode), and therefore, cannot be executed
directly by a user-level application.

Using a device driver for delivering a hypervisor
adds some complexity to the laboratory environment
because Windows 7 requires drivers to be signed
before it executes them. Therefore, we need to create
a test certificate, self-sign the device driver using the
test certificate, and instruct windows to execute
drivers with self-signed certificates. Windows will
only execute drivers with self-signed certificates
when it is in test mode which is enabled by issuing
the command “bcdedit.exe -set TESTSIGNING
ON” and then rebooting the system. When Windows 7

Processor

Hypervisor

OS
(Win 7)

System Hardware

OS
(Linux)

Normal OS/CPU
Interaction

VM VM

Instructions requiring
hypervisor Intervention

56155615

boots in the test mode, the text “Test Mode” appears
at the bottom right corner in the background of the
main screen.

Students need to use two separate computer
systems for the hands-on laboratory exercises. One
system, designated as the development system, is
dedicated to code development and compiling – it is
not used for testing the driver and the hypervisor. In
most cases, students chose to use their personal
laptops as the development system. This computer
can run either windows 7 or 32-bit windows XP (we
had no issues cross-compiling 64-bit device driver
code for Windows 7 on a development system
running 32-bit Windows XP). The second computer,
designated as the test system, needs to be running 64-
bit Windows 7 and have a processor that supports
VMX. In our laboratory, we constructed the test
computer using Intel’s LA1155 chipset and the i7-
2600 processor (Sandy Bridge). The VMX
functionality was enabled in the BIOS of the test
machine. A folder on the test machine was mapped
onto the development machine over the network in
order to facilitate the delivery of new versions of the
device drivers to the test machine.

We developed a number of scripts to help
generate test certificates, compile and self-sign the
drivers, transport the driver to the test system, and to
startup the driver. We also installed Microsoft’s
DebugView tool on the test system [9]. DebugView
is used for displaying kernel-mode and Win32 debug
output generated by the kernel and device drivers.
We found that the liberal use of debugging output
statements was, in many cases, easier than using a
kernel-mode debugger.

4. Structure of the Hypervisor

This section discusses how the device driver is
used for inserting the hypervisor layer below the
operating system, how the hypervisor is structured in
order to enable students to do a majority of the code
in C, and how the hypervisor interacts with the guest
operating system.

4.1. The Device Driver

A full discussion on writing device drivers is
beyond the scope of this paper; we describe the
salient points relevant to the delivery of the
hypervisor and how it can be used to help with
debugging and monitoring the hypervisor during
development.

Device drivers based on the Windows Driver
Model (WDM) architecture are characterized by six
functions DriverEntry(), DriverUnload(),

DispatchCreate(), DispatchClose(), DispatchWrite(),
and DispatchRead(); and one data structure, the
DeviceExtension.

The DeviceExtension structure holds data that
uniquely describes the state of this instance of the
driver and establishes the context of the driver
instance. The DeviceExtension structure contains
fields mandated by the WDM architecture and other
fields unique to the driver. We added fields
containing pointers to important hypervisor data
structures and debugging areas to the
DeviceExtension for our driver. These data
structures are described in more detail below.

The CreateDevice() function is called once
during the lifetime of the device driver when it is first
loaded by the system; it can be thought of as the
“main()” function of the driver. This function
requests Windows to setup the driver’s instance and
to allocate space for the DeviceExtension. It also sets
up the pointers to the other five characteristic
functions in the DeviceExtension so they can be
called by the operating systems when needed (the
WDM architecture uses an event-driven
programming model for device drivers). The
function also establishes a symbolic name that user
mode applications can use to connect to the device
driver and informs Windows that the device driver
will not use buffered I/O (i.e., the driver will directly
access the user-space memory in the application
when the application makes read/write requests to the
driver).

The DriverUnload() function is called when the
driver is exited; it frees any memory allocated by the
driver that has not already been released back to the
operating system and deletes the symbolic link.

The DispatchCreate() function is called when an
application opens a connection to the driver via the
CreateFile() Windows function. In DispatchCreate(),
we allocate a page (naturally aligned 4-Kbytes) of
memory for each of the following regions required by
the processor to support virtualization: (a) the
VMXON region, (b) the virtual machine control
structure (VMCS), and (c) the MSR bitmap. The
function also allocates two 64-Kbyte areas of
physically contiguous memory, one for the
hypervisor’s stack and another to hold general-
purpose debugging information to assist in the
hypervisor’s development.

The DispatchClose() function is called when the
application closes its connection to the device driver.
This function ensures that the hypervisor has been
terminated properly and frees all hypervisor-related
memory regions (e.g., VMXON region, VMCS,
stack, and debugging).

56165616

The DispatchRead() and DispatchWrite()
functions are called then the user application calls
FileRead() and FileWrite() Windows functions,
respectively. Other than the direction of the data
transfer expected by Windows, these functions are
essentially identical. Because the driver can directly
accessing the user’s buffers, the driver can read and
write from/to the buffer in both functions. Therefore,
we can program a user-level application to write
“commands” and their parameters into the I/O buffer.
The device driver, in the DispatchRead() and
DispatchWrite() functions, can interpret the
commands, execute the actions requested, and write
the results into the buffer. When the FileRead() and
FileWrite() completes, the application can read and
display the results reported back in the buffer.

This arrangement where the device driver acts as
the application’s kernel-mode surrogate enables the
user application to perform privileged activities, such
as installing and testing the hypervisor. We use only
the DispatchRead() function to control the device
driver in this course. However, students are free to
use either function as they see fit. The user
application requests the installation and removal of
the hypervisor using this mechanism.

4.2. The Hypervisor

When the DispatchRead() function receives the
command to install the hypervisor, it initializes the
VMXON region and the VMCS. Initialization of the
VMXON region is straightforward; it only involves
clearing the memory and writing the VMX version
information leaded from a machine-specific register
(MSR) at a specific location in the VMXON region.

Initialization of the VMCS is more complex
because it establishes the contexts of the hypervisor
(the host) and the virtual machine in which the
operating system (the guest) is executing.

One of the overarching goals of this course was
to minimize the amount of coding required by the
students so that they could focus on the virtualization
concepts rather than spend large amounts of time
setting up virtual machine contexts. Therefore, we
designed our hypervisor development laboratory
assignments along the lines of the Blue-Pill project
such that the hypervisor monitors the smallest
possible subset of processor status. Additional
monitoring and control functionality is added as
required for advanced experiments. This means that
the operating system continues to control all aspects
of the computer such as memory management
(including paging and virtual memory), I/O, and
interrupt handling. Note that the operating system is
unaware of the existence of the hypervisor and the

hypervisor is invoked asynchronously by the
processor in response to certain events. Therefore,
the hypervisor’s code and data is stored in locked
(i.e., immovable, always resident) areas of memory.

The VMCS contains the following three broad
types of fields: (a) control, (b) guest state, and (c)
host (i.e., hypervisor’s) state. The control fields are
used by the hypervisor to define the events that cause
the physical processor to stop the execution of the
virtual machine and return control to the hypervisor.
These fields also provide information to the
hypervisor as to the reason why the hypervisor is
being invoked (e.g., which instruction caused the
virtual machine to exit, the instruction’s length, and
which registers are affected). This information can
be used by the hypervisor to emulate the execution of
the instruction/event and resume the execution of the
virtual machine.

The guest state fields hold the contents of the
control, descriptor, and segment registers that are
loaded into the virtual processor when the guest code
begins or resumes execution. The hypervisor
initializes these fields to setup a new virtual machine
and the physical processor stores the contents of the
virtual processor’s control registers back into these
fields when the virtual machine execution stops and
control is returned to the hypervisor. The hypervisor
can then modify these registers as needed in order to
emulate the execution of the instruction or event that
cause the hypervisor to be invoked before resuming
the execution of the virtual machine. Interestingly,
the general-purpose, floating point, and MMX and
XMM registers are not saved automatically and must
be saved and restored by the hypervisor if they are
modified in the hypervisor. This is the same
behavior required by interrupt handlers. Note that the
hypervisor may need to modify the content of some
general purpose registers in order to reflect the result
of emulating an instruction/event back to the virtual
machine.

During course development, the process of
establishing the control register context for a virtual
machine capable of executing Windows 7 appeared
to be a significant challenge until we realized that we
could simply reflect the current control register
context into the guest state fields in the VMCS; our
device driver is running in kernel-mode as part of
Windows 7 when the DispatchRead() function is
called. This means that the current content of the
control registers are correct for continued execution
of the operating system within a virtual machine.
Therefore, we query and write the contents of the
various control registers to the corresponding host
state fields in the VMCS.

56175617

The host state fields contain the processor
context that should be loaded into the control and
segment registers when the hypervisor is executed.
For our initial implementation of a thin hypervisor,
we chose to setup the control register context to be
identical to that of Windows 7. This kept us from
having to setup a separate paged memory
infrastructure; saving us considerable virtual memory
design and programming effort.

Figure 2 depicts the organization of the
hypervisor code and its control flow at a high level.
Hypervisor setup begins when the device driver’s
DispatchRead() function receives the command to
install the hypervisor. The DispatchRead() function
calls several utility functions written in assembly
language to enable VMX operations and to initialize

the VMXON region and the VMCS. The guest and
host instruction pointer fields in the VMCS are filled
with the addresses of the instructions following the
VMGuest and VMHost assembly language labels,
respectively. These labels are exported by NASM
and the linker sets up the correct values when all the
component object files are linked together into the
driver’s executable file. After the VMCS is setup,
the DispatchRead function calls the VM_Launch()
function written in assembly language. VM_Launch
writes the current stack pointer value into the guest’s
stack pointer field in the VMCS and then issues the
VMLAUNCH instruction.

If the VMLUANCH succeeds, the virtual
processor begins execution by loading the context
from control context from the VMCS – essentially

Figure 2: Hypervisor Code organization and Control Flow

Assembly Language Code C Language Code / Operating System
Utility functions called by the C code to
read/write registers, VMCS fields, and
enable VMX operations (e.g., ReadMSR,
WriteMSR, GetGDTR, CPUID, GetCR0,
SetCR0, VMXOn, VMXOff)

Note: for clarity, calls and returns to the
code in this block are not shown using
arrows

DispatchRead() (Start Here)
1) Enable VMX ops;
2) Setup VMCS;
3) Write the address of the VMGuest label as

the address of the guest in the VMCS;
4) Write the address of the VMHost label as

the address of the host in the VMCS;
5) Call VM_Launch();
9) Return success or failure code to the user-

level application;
VM_Launch
6) Write the current stack pointer as the

guest’s stack pointer in the VMCS;
7) Issue the VMLAUNCH instruction;
// The EFlags register settings contain
// launch failure or success codes.
// If VM Launch succeeds, this code is
// now executing in a VM.
VMGuest:
8) Read EFlags and return to caller

VMHost
12) Write the GPRs to the stack;
13) Setup a C friendly stack frame;
14) Call HostCallback() passing it the

address of the area containing the
GPRs;

21) When HostCallback() returns, reload
the GPRs from the stack;

22) Issue the VMRESUME instruction
(this will resume VM execution);

OS Code (Language Independent)
10) … // other OS/user code
11) The OS issues an instruction that causes

the host to activate (e.g., CPUID);
23) The OS resumes execution here;

(e.g., use values returned by CPUID)
24) … // other OS/user code

HostCallback() (C-based hypervisor code)
15) Determine the cause for the hypervisor to

execute;
16) If unhandled reason then produce BSOD;
17) If handled reason, emulate instruction;
18) Update GPR contents using the address

passed into this function by VMHost;
19) Update the guest’s instruction pointer to

skip over the instruction that caused the
host to execute (if applicable).

20) Return

56185618

leaving the control registers unchanged (because they
have been setup in the VMCS to have the same
values they have currently). The virtual machine
starts executing at the instruction following the
VMGuest assembly language label. This code reads
the EFlags register which contains the success/failure
flag settings resulting from the execution of
VMLAUNCH instruction and returns these values
back to the DispatchRead() function. If
VMLAUNCH fails, the virtual machine does not
execute. However, the physical processor continues
executing the instructions following the
VMLAUNCH instructions – these are the same as
above, returning the content of EFlags to
DispatchRead(). When control returns to
DispatchRead(), the function examines the return
value in order to determine whether or not the virtual
machine launch was successful (and whether or not it
is now running in a virtual machine).

Once the virtual machine is running and the
driver returns control back to the operating system,
the host code is only invoked when certain
instructions are called or any events specified in the
VMCS control fields occur. The host always begins
execution at the instruction following the VMHost
label. This assembly language code saves the content
of the general purpose registers onto the host’s stack
(the stack pointer register is automatically loaded by
the processor from the VMCS when the host begins
execution). The code also sets up a C-language
friendly stack frame before calling the
HostCallback() function written in C.

Microsoft describes the 64-bit C/C++ and
assembly language application binary interface (ABI)
in the Microsoft Software Developer Network
(MSDN) documentation online [10]. According to
the ABI, 64-bit return codes are returned in the RAX
register. Parameters P1, P2, …, Pn are passed to
functions from left to right order, P1 in register RCX,
P2 in register RDX, P3 in register R8, P4 in register
R9, and P5 through Pn on the stack. Space for the
first 4 parameters is also reserved on the stack so that
the compiler/assembly language programmer can
save their contents if needed. The caller sets up and
cleans up the stack. Registers RDI, RSI, RBX, RBP,
and R12-R15 must be preserved by the called
function (i.e., our assembly language functions).
Figure 3 depicts the layout for the stack when the
HostCallback C function is called by the assembly
language host code.

4.3. Debugging the Hypervisor

During the initial development phase of the
hypervisor, we were plagued by frequent kernel
crashes known as the “blue screen of death” (BSOD).
These BSOD events were caused because of bugs in
the setup of the VMCS fields. It is difficult to debug
some of these events because the BSOD immediately
replaces any debugging output captured and
displayed by the DebugView tool and our user-level
application. Sometimes, the test computer would
freeze before the debugging information was
displayed. Because these BSODs were caused by
incorrect setup of the control registers, a kernel
debugger also could not be used effectively because
the kernel was unstable.

Our initial solution to this debugging problem
was to use the PC speaker peripheral to produce tones
of varying frequency to indicate progress made by
our hypervisor code after the virtual machine launch
was initiated. The PC speaker peripheral is a very
simple device existing on the I/O bus that only
requires about nine assembly instructions to produce
a tone from the speaker. By embedding tone
producing codes of different frequencies at strategic
points in our code, we were able to discern whether
or not the VMLAUNCH instruction was successful

This area is above our
stack

Space for 15 64-bit
words for storing rax,
rbx, rcx, rdx, rdi, rsi,

rbp, and r8-r15 in
bottom-up order

Space for the four
potential parameters

when HostCallback() is
called (i.e., rcx, rdx, r8,

and r9 in bottom-up
order)

Return Address

This space will be used
by HostCallback and

other C functions that it
calls

(1) The stack
pointer points
here when the

host begins
execution (the
stack grows
downwards)

(3) The stack
pointer points

here when
HostCallback

is called

(2) The stack
pointer points
here after the

C-friendly
stack is setup

Figure 3: Stack Layout for the Host Code

56195619

and if our host code and HostCallback() functions
were being called properly.

The system became stable once we corrected the
VMCS setup errors. We are now able to debug the
hypervisor code using conventional means. For
example, we make extensive use of the KdPrint()
macro to send kernel-level debugging output to be
viewed by the DebugView tool. We also produce our
own BSODs for certain conditions (e.g., unhandled
reasons for hypervisor invocation – we clearly cannot
return to the operating system without reacting to the
event/instruction that caused the hypervisor to
execute).

Furthermore, because our hypervisor’s context is
largely the same as Windows’ context, we found that
we could successfully use the KdPrint() macro from
within our hypervisor code (even though the
hypervisor is invoked asynchronously). Clearly,
calling operating system functions from within the
hypervisor is inadvisable because doing so may
disrupt the current internal state of the operating
system. What we need is a simple persistent storage
device that can be accessed simply without requiring
complex device driver software because we should
not use Windows drivers from within the hypervisor.
Our test computer does not have a traditional serial
(COM) port (i.e., only USB ports exist on this
computer). Programming the USB or Ethernet
devices provided on the motherboard was too
complex to be considered as a serious alternative.
These constraints led us to begin using an FPGA-
based peripheral device as a debugging aid that
proved to be of great benefit during the initial
development and testing of the hypervisor. This
device is described in Section 5 below.

4.3. Hypervisor-based Key Logger

After the students completed a stable
implementation of the basic hypervisor, we asked
them to incorporate key logging functionality into the
hypervisor for a legacy PS2 (i.e., non-USB)
keyboard. PS2 keyboards are easier to deal with than
USB keyboards because their legacy interrupts and
control mechanisms are well documented. However,
handling external interrupts adds complexity to the
hypervisor because it now needs to respond to
interrupts and perform advanced I/O operations.
Enabling interrupt handling in the hypervisor is
enabled by setting the appropriate fields in the
VMCS. Doing so causes the hypervisor to be
activated when an external keyboard interrupt is
issued, instead of the guest operating system’s
keyboard interrupt handler. The guest will never

receive any external keyboard interrupts unless the
hypervisor passes the interrupt along to the virtual
processor using the event injection VMX
functionality when the guest execution is resumed.

Setting up event injection fields in the VMCS is
relatively straightforward; the hypervisor simply
copies information related to the interrupt into the
event injection fields in the VMCS. However, the
hypervisor should pass along interrupts only when
the guest is ready to process interrupts (i.e., the guest
has not disabled interrupts on the virtual processor).
If the guest has disabled interrupts, the hypervisor
needs to queue the interrupt events and play them
back when the guest is able to accept interrupts.

In order to detect when the guest re-enables
interrupts, the hypervisor sets fields in the VMCS to
capture the enabling of interrupts by the guest. When
the hypervisor is invoked because the guest has just
enabled interrupts and there are external interrupts in
the interrupt queue maintained by the hypervisor, the
hypervisor removes the first interrupt in the queue
and injects a corresponding event into the guest’s
execution.

We encountered another interesting problem
when capturing keystrokes. Keystroke information is
consumed when read from the keyboard controller,
and therefore is no longer available to be read by the
guest operating system’s keyboard interrupt handler.
Fortunately, it is possible to program the keyboard
controller to replay an arbitrary keystroke; our
hypervisor exploited this functionality to setup the
keyboard to replay the keystroke recorded along with
the interrupt information on the keystroke queue
when the event is injected into the guest’s execution.

Logged keyboard make (i.e., press) and break
(i.e., release) keyboard scan codes are stored in a
buffer and reported using the KdPrint() macro. The
content of the buffer can also be reported by our
hypervisor driver to the hypervisor control user
application on demand. This reporting can be easily
accomplished because the hypervisor’s keystroke
buffer is located in the general-purpose buffer
allocated by the driver during initialization, and
therefore, is accessible by the driver and the
hypervisor simultaneously.

5. Peripheral-based Hypervisor
Debugging

We had previously developed an FPGA-based
PCIe peripheral device for another research project
using the low cost Virtex-5 OpenSPARC Evaluation
Platform from Digilent Inc [11]. Our PCIe
implementation presents two memory mapped
regions to the test computer. The first memory

56205620

region corresponds to 16 32-bit control registers on
the FPGA implementation. The second region
corresponds to a 64-Kbyte storage area on the FPGA.
Upon starting up, our hypervisor device driver
queries the physical base addresses of these two
memory regions and requests Windows to setup page
table entries that allows the driver to access the
memories using logical addresses by using the
MmMapIoSpace() kernel call. Once the logical
addresses are available, the driver and the hypervisor
can readily access these memory areas via normal
pointer dereference operations.

We use the FPGA to store trace and debugging
information in the second memory region.
Essentially, we create formatted execution trace
strings similar to those created by the KdPrint()
macro and write them onto FPGA’s memory. By
incrementing the buffer pointer after every write
operation, we can keep track of guest and host
execution in real-time. Furthermore, because the
FPGA is supplied by an external power source,
independent of the host computer, the FPGA’s
memory storage is persistent across host computer
boot events. This important fact enables us to
perform post mortem analysis of the trace after we
reboot the test system following a BSOD or system
lockup event. This important capability is not
available in standard RAM on our computer which
was cleared on all reboot events (including warm
reboots).

An additional feature of the FPGA-based device
is that it is capable of direct memory access (DMA)
operations over the PCIe bus. DMA operations are
programmed and initiated by writing the physical
addresses of the target memory on the host computer,
transfer sizes, and transfer direction (i.e., read or
write) into the FPGA implementation’s control
registers. DMA allows us to copy large portions of
host memory into the FPGA for offline analysis
asynchronously from the physical (and therefore the
virtual processors). Although we did not use this
feature in this course, it is available if there is any
need for performing asynchronous real-time
monitoring of the hypervisor. This is a course option
we will seriously considering including in future
course offerings.

6. Discussion and Conclusions

We offered this course in the spring 2011 to a
small group of five motivated undergraduates.
Students were asked to program individually while
designing collaboratively. Our goal was to foster
individual software development effort while
simultaneously encouraging an exchange of ideas. A

secondary goal was to reduce what can appear to be
an overwhelming amount of design work and
technical reading required to design and implement a
hypervisor. All students, except for one who had
time management issues with all of his courses,
produced exemplary results.

6.1. Lessons Learned

During our first offering of the course, we made
several observations that will lead to improvements
for our subsequent offerings. These observations are
summarized below.

We spent a considerable amount of time at the
beginning of the semester going over the design of
the device driver. Much of this discussion is not
necessary for the purpose of the hypervisor
development. Also, the students can pick up this
material by reading the code themselves and by
following excellent tutorials online describing how to
write WDK architecture device drivers.

Another large period of time was spent by
students in debugging the VMCS setup. Now that we
have identified, through experience, the sources of
most VMCS setup errors, we can point out the
potential for these errors to the students. Also,
teaching the student effective debugging skills using
offline storage, providing fragments of prewritten
code (e.g., the VMLaunch function) can significantly
reduce the time spent by students in implementation
and debugging. Many students stated that doing this
work was immensely rewarding. However, we were
set back at least three weeks because of VMCS
debugging issues and device driver design
discussions. This time can be better spent discussing
other issues such as the following: (a) how to design
memory protection for the hypervisor so that it is
completely isolated from the guest environment, (b)
how to design a hypervisor to support more than one
guest on at the same time, (c) design issues related to
distributed hypervisors (on our current test computer
we disable all but one core in our multi-core i7
processor when Windows 7 boots), and (d) how to
handle nested hypervisors.

The key-logging implementation, although
seemingly straightforward in appearance posed
several challenges. The issue of destructive reads
from the keyboard controller has already been
discussed previously. Our initial design for the key
logger was to simply ignore interrupts and all the
problems associated with event injections. Instead,
we chose setup fields in the VMCS to intercept I/O
operations (i.e., the IN and OUT) instructions that
target the keyboard ports. However, this technique
did not work because in modern chipsets, the

56215621

keyboard controller is also presented at a memory
mapped location and the Windows 7 keyboard driver
uses the memory mapped addressed of the keyboard
controller’s registers as opposed to the I/O bus
mappings. Therefore, our I/O event traps were never
triggered.

As virtualization becomes increasingly popular,
there are a number of well-written technical research
papers becoming available (e.g., on the VMware
website). Advanced undergraduate and graduate
students can develop some these ideas into
publishable projects and should be encouraged to do
so. A specific area of interest we have is to study the
impact of hypervisor execution overheads on the
runtime performance of applications running on
virtualized platforms.

6.2. Future Expansion

One specific area of interest that we were not
able to cover in our initial course offering is how to
virtualize the physical memory in the system such
that the guest operating system is completely isolated
from the hypervisor and other potential guests.
Chapter 28 in Volume 3B, System Programming
Guide, Part 2 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual series
describes in detail how this can be accomplished.
This is a complex task and will require considerable
design and development effort in advance of our next
offering of the course.

Another important topic to consider including in
this course is a discussion and implementation of a
hypervisor that utilizes Intel’s VX-d technology to
virtualize the I/O capabilities of the chipset. I/O
virtualization, if implemented properly, has the
potential to prevent attacks on the system from
malicious functionality embedded in the firmware
and/or logic of peripheral devices.

7. References

[1] Intel Corporation, Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1: Basic

Architecture, 2011,
http://www.intel.com/Assets/PDF/manual/253665.pdf,
accessed June 14, 2011.

[2] D. Abramson, J, Jackson, S. Muthrasanallur, G.
Neiger, G. Regnier, R. Sankaran, I. Schoinas, R. Ulig,
B. Vembu, and J. Weigert, “Intel Virtualization
Technology for Directed I/O,” Intel Technology
Journal, Vol 10:3, 2006.

[3] J. Rutkowska, “Subverting Vista Kernel for Fun and
Profit”, Black Hat Briefings, Las Vegas, 2006,
http://www.blackhat.com/presentations/bh-usa-06/BH-
US-06-Rutkowska.pdf, accessed June 14, 2011.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauery, I. Pratt, and A. Warfield,
“Xen and the Art of Virtualization,” in the
Proceedings of the 19th ACM Symposium on
Operating Systems Principles, Bolton Landing (Lake
George), New York, October 2003.

[5] K. Adams and O. Agesen, “A Comparison of Software
and Hardware Techniques for x86 Virtualization,” in
Proceedings of Architectural Support for
Programming Languages and Operating Systems
Conference, San Jose, California, October 2006.

[6] Intel Corporation, Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3: System
Programming Guide, 2011,
http://www.intel.com/Assets/PDF/manual/325384.pdf,
accessed June 14, 2011.

[7] Intel Corporation, Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2: Instruction
Set Reference, 2011,
http://www.intel.com/Assets/PDF/manual/325383.pdf,
accessed June 14, 2011.

[8] The NASM Development Team, NASM,
http://www.nasm.us/xdoc/2.09.08/nasmdoc.pdf,
accessed June 14, 2011.

[9] M. Russinovich, DebugView for Windows v4.76,
http://technet.microsoft.com/en-
us/sysinternals/bb896647, accessed June 14, 2011.

[10] Microsoft Corporation, “x64 Software Conventions,”
MSDN Online Documentation,
http://msdn.microsoft.com/en-
us/library/7kcdt6fy.aspx, accessed June 14, 2011.

[11] Xilinx, Inc., ML505/ML506/ML507 Evaluation
Platform User Guide, UG347 (v3.1.2) May 16, 2011,
http://www.xilinx.com/support/documentation/boards
_and_kits/ug347.pdf, accessed June 14, 2011.

56225622

