ECS140A-W14-07 February 13, 2014

ASSIGNMENT 5: LISP
Due: Februarg6, 2014

Overview

The purpose of this assignment is for you to gain saxperience designing and imple-
menting LISP programs. This assignment explores onlyvaofahe mary interesting LISP fea-
tures.

This assignment is broken into diyparts. Thefirst part is a fairly straightforward LISP
warmup. Thesecond part illustrates a standard technique of car-cdr recursion. The third part
involves writing your own version of the standard LISP function mapHae fourth part imolves
writing a function that rewrites LISPxpressions. Morepecifically this part takes as input a
LISP expression and produces as output angpossibly different LISP xpression. Thenodi-
fied expression will be semantically egaient to the original, but it will use corgltather than
if’s. Thefifth part checks the results of the fourth part.

N.B., you are restricted as to which LISP functions you arevatlado use for various parts
of this assignment. See “Notes” for details.

Part 1: The Double Functions
Write the following three functions.
double-recursive (y)
double-iterative (y)
double-mapcar (y)

each of these returns the list consisting of each element gfitis list has been replaced
by two copies of the elementd-ar example,

(double-recursie '(1 2 3))
returns
112233)
If yis not a list, then nil is returned.
These double functions work only at the topelgFor example,
(double-recursie '(1 (2 3) 4))
returns
11(23)(23)44
Note hav the top-level elements are duplicated, but the elements of nested lists are not.

double-recursive is to be writtenrecursively, double-iterative is to be writteniteratively
using either ‘go’ or ‘do’, andlouble-mapcar is to be written using ‘mapcarHint: for dou-
ble-mapcar, use the “apply-append trick” (see text).

ECS140A-W14-07 February 13, 2014

Part 2: The Recursive Double Function
Write the function
rdouble §)

On non-nested lists, it bebes like the double functions abe. On nested lists, hoever, it
returns a list of duplicates of the inner elemeifts. example,

(rdouble '(1 (2 3) 4))
returns
(11(2233)44)
rdoubleis to be written recuregély (no iteration is allaved). Hint:use car-cdr recursion.

Part 3: The my-mapcar Function
Write the function
my-mapcar (fun1112)

it behaves exactly as mapcar usirfign with argument list$1 andl2. Assume thatmy-map-
car is invoked only with the two arlgument lists and thdtin can be eauated on tw argu-
ments. Writeamy-mapcar recursely. Use no iteration or mapping functions!

Part 4: The Rewrite Function
Write the function
rewrite (X)

returns angression in which each if has been replaced by awvatgoi cond. x is a \alid
LISP epression. Assumeach if is properly formed, i.e., contains a then part and possibly
an else part. Examples:

Expression Returns
(rewrite '(* 44 2)) (*44 2)
(rewrite '(if 3 4 5)) (cond (34) (t5))

(rewrite *(list (if (= 8 8) 'y) (if (= 8 7) 'no))) (list (cond ((= 8 8) y)) (cond ((= 8 7) 'n0)))

Part 5: The Check Function
The function
check (X)

returns a list of threealues. Thesecond element is the result eBleiating expressionx.

The third element is the result ofaliating the result of (krite X). Thefirst element is t or

nil corresponding to whether or not thalwe of the second element is equal to that of the
third element. Note that if yourwite function (and check function!) is correct, the first
element of each list that check returns will be "t". Assumexbantains no variables.

ECS140A-W14-07 February 13, 2014

Notes
* The command to use Common LISP is “clisp -q”. clispvalable on CSIF systems.

» Some editors prade specific support to simplify editing LISP functions, for example, emacs’
LISP mode, v8 -l option, and nedi§ and jot's parenthesis matching.

» Appendix A of LISPcraft summarizes LISPRuilt-in functions. Each function is xplained
briefly. You will find this a very useful reference as you write and debug your program.

» The test program is provided in thevgi" on the class webpage. Ikeecises the functions
that you write; hence, there is no test ddfdtest.l" is the name of the test file in your direc-
tory, then, within LISPyou need only type “(load "test.l")”. This file defines the test functions

test-double, test-rdouble, test-rewrite, and test-check.

Each of these functionxercises the corresponding functions that you are to wFte.exam-
ple, to test your double functions simply type

(test-double)

In addition, the functionest simply invokes each of the abee test functions. These test func-
tions use additional helper functionSor example,

(test-double-recurge)

tests onlydouble-recursive. See the test file for additional helper functions. Do not ugefan
the test function names as a hame of one of your functidote that each of these functions
returns “t” when complete, so there will be an extra line of output.

» We're also providing a “batch mode” test script, which you should find very helpful.

» “Correct” output will also be gén. Your output must match the “correct” outp@y “match”,
we mean match exactly character by charauotetuding blanks, on each line; also, do not add
or omit ary blank lines. (For this program, since LISP is doing all the output, that shauben’
hard) Be sure to read and follorelevant comments in the test
program.The only exceptions are the “Dribble ... start¢dand “Dribble ... finished .”.
lines, which will, of course, not match. Inyagase, it is up to you toevify the correctness of
your output.

* You may define additional helper functions that your main functions use. Be sure, though, to
name the main functions as specified since the test program uses those names.
» Coding restrictions.

See the LISP functions webpage under HW5 on the webpage. As noted there, use only PURE
functions for all functions you write, except:

double-iteratte: PURE, BASICITERATIVE, prog, return, setq
double-mapcar: PURBJAPPING

(OK, I'll be explicit: Don’t even think about using MAPPING for my-mapcar!)
Use no global variables.

ECS140A-W14-07 February 13, 2014

 To define your own initial LISP environment, place an init.Isp file in the directory in which you
execute clisp and run clisp via “clisp -q -i init.IspFor example, you will probably want to put
the command

(setq *print-case* :downcase)
in that file.

* When deeloping your program, you might find it easier to test your functions first integcti
before using the test progranYou might also find trace feature (LISPcraft section 11.5) or
print functions (including the format function) useful in debugging your functions.

* Your codes execution on CSIF must not be grossly inefficient: your code must complete all the
provided tests in at most 10 seconds (which is very generous). If your code is taking longer
then you are likely doing much needless recomputing. Using “let” expressions will likely help
you sole that problem.

» Grading will be divided as follows.
Percentage Function(s)

30 Rart 1: The Double Functions
25 Fart 2: The Recurge Double Function
10 Rart 3: The my-mapcar Function
30 Rart 4: The Rewrite Function
5 Part 5: The Check Function

* A few points to help the novice LISP programmer:

» Watch your use of “(",)", “”, and “”. Be sure to quote things that need to be quoted,
e.g., the name of the file in load.

« To e hav LISP reads in your function, use pretty printirfgor example, (pprin{sym-
bol-function ‘foo))will print out the definition of function foo, using indentation towho
nesting. Thids useful to locate logically incorrect nesting due to, e.g., wrong parenthesiz-
ing.

 If you cause an erro€ommon LISP places you into a mode in which debugging can be
performed (LISPcraft section 11.2Jo eit ary levd, except the top e, type “:q". To
exit the top lee, type “'D”. See the class handout for an example.

» See the webpage for exact details of what to turn in, theéiged source files, etc. As usual,
you must deelop this program in “part order”: No credit will bevgh for one part if the pra-
ous part is not entirely working.

