
MSc II: Further Statistical Analysis (Autumn Term)
Advanced Multivariate Analysis

4 Cluster Analysis

The aim of Cluster Analysis is to find ‘natural groupings’, if any, among a set of units
(objects, individuals, ...) based on data for the units. This is another exploratory, hypothesis
generating technique, and there are very many techniques used in practice.

Roughly speaking we want individuals within the same cluster or group to be similar to one
another while individuals in different groups are dissimilar. However we can’t, in general,
define a cluster. This probably accounts for the number of procedures that exist for finding
them since each method used imposes some kind of structure on the data and implicitly
defines what kind of grouping or clustering is being sought.

If the data can be represented graphically, the human eye is often the best detector of
clustering. However this is not always so. It is hard, for example, for the human eye to
detect randomness, and it may be necessary to plot and test for randomness before allowing
the computer to produce clusters which may be spurious.
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Consider also the following example:

Data were collected on 86 long-term prisoners and 8 scores (quantatitive variables) were
used to produce a dissimilarity matrix and a cluster analysis was carried out. Three clusters
were found. In order to try and represent the clusters graphically it was assumed that
the clusters represented three samples from populations with different mean vectors and
a common covariance matrix - and a canonical variate analysis was carried out using the
original 8 variables. The 86 prisoners were then plotted with respect to the 2 canonical
axes.

(Note: Cannot possibly carry out a 1 way MANOVA test since groupings were determined
by examining the data).

It is clear from the above plot that there is no real ‘clustering’. Thus there are problems in
deciding whether it makes sense to cluster, defining what is meant by a cluster, and deciding
what method to use bearing in mind that each method imposes it’s own structure on the data.

e.g. Some cluster techniques always find ball shaped clusters, others find chains, some don’t
seem to detect unequal sized groups, some look specifically for mixtures of multivariate
normal distributions but assume a common covariance matrix. Even if this holds the
methods do not always work well.
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It is often sensible to use several methods of cluster analysis (giving some thought to which
would be suitable) - and it is also very important to find a suitable graphical representation
on which to superimpose the resulting clustering.

We will consider only hierarchical cluster methods operating on a dissimilarity matrix
D = (dij).

4.1 Hierarchical Cluster Methods

Hierarchical clustering techniques produce a tree structure of clusters such that as we move
back towards the root, new clusters form by merging old ones. Thus we have a nested se-
quence of partitions into g groups, starting with g = n (where n is the number of individuals)
and finishing with g = 1. The hierarchical structure is usually represented by a tree-diagram
or dendrogram with a distance scale associated with it.

Notes:

1. The ordering of the branches is arbitrary to some extent. i.e. units 1 and 12 cannot be
taken to be the most dissimilar.

2. For any particular value of distance on the associated scale, a horizontal line can be
drawn giving the number and combination of clusters existing at that distance level.

3. We start with distances between individuals but the vertical axis represents distances
between groups (i.e. the ‘threshold’ distances at which groups join). Inter-group or
inter-cluster distances can be defined in many ways and the method used defines the method
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of cluster analysis and determines the kind of clusters obtained.

We shall consider only agglomerative algorithms for producing an hierarchical structure.
That is, the algorithm always starts with n clusters, the n separate individuals, and
gradually merges them into fewer clusters until g = 1. Note that there are also divisive
algorithms. Note also that some cluster methods can be implemented using either an
agglomerative algorithm or a divisive algorithm, or some other algorithm. (This is true of
single linkage cluster analysis - each method gives the same dendrogram).

General Agglomerative Procedure

Let dij denote the dissimilarity between the ith and jth individuals and Dij denote the
dissimilarity between the ith and jth groups being formed.

(1.) Start with n clusters (Dij = dij).

(2.) Find the smallest element of (Dij), say Drs and unite groups r and s into a new
group. Record Drs as the threhold distance at which this new group formed. (What
about ties?).

(3.) Calculate the dissimilarity between the new group (rs) and each other group i using

Di(rs) = f(Dir, Dis, Drs, nr, ns, ni)

for all i 6= r or s, thus producing a reduced order matrix (Dij).

(4.) Go to (2.) unless just one group remains.

We shall consider 7 different methods that differ only in the function used to calculate
distances between groups.

M1: Single Linkage Cluster Analysis

Di(rs) = min{Dir, Dis}
=

1

2
{Dir + Dis − |Dir −Dis|}

M2: Unweighted Average Linkage

Di(rs) =
1

2
(Dir + Dis)
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M3: Weighted Average Linkage

Di(rs) =
nrDir + nsDis

nr + ns

M4: Complete Linkage

Di(rs) = max{Dir, Dis}
=

1

2
{Dir + Dis + |Dir −Dis|}

Note that methods M1 and M4 use only the rank order of the distances.

The final three methods are based on geometrical ideas in which the n original units are
thought of as points in some Euclidean space.

M5: Centroid Method

Dij is the squared Euclidean distance between the centroids of clusters i and j.

Di(rs) =
nr

nr + ns

Dir +
ns

nr + ns

Dis − nrns

(nr + ns)2
Drs

M6: Median Method

Dij is the squared Euclidean distance between the medians of clusters i and j (or weighted
centroids).

Di(rs) =
1

2
Dir +

1

2
Dis − 1

4
Drs

M7: Ward’s Method (Minimum Sum of Squares)

Dij is the increase in the sum of squares within clusters, after fusion, summed over all
variables.

Di(rs) =
ni + nr

ni + nr + ns

Dir +
ni + ns

ni + nr + ns

Dis − ni

ni + nr + ns

Drs
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These, and many other methods are special cases of a general form for calculating distances
between groups. The method is due to Lance and Williams.

Di(rs) = αrDir + αsDis − βDrs + γ|Dir −Dis|
Thus all the above methods (and others) are implemented in a single algorithm.

Note 1: Considering the geometric methods in particular, we think of clusters as points in
space.

M5 (Centroid method):

Clusters r, s and i are represented as xr, xs and xi, their mean vectors or centroids.

The centroid of (rs) is
nr

nr + ns

xr +
ns

nr + ns

xs

Since Dij is the squared Euclidean distance between centroids i and j, we have

Di(rs) = (xi − x(rs))
T (xi − x(rs))

After some algebra this reduces to

Di(rs) =
nr

nr + ns

(xi−xr)
T (xi−xr)+

ns

nr + ns

(xi−xs)
T (xi−xs)− nrns

(nr + ns)2
(xr−xs)

T (xr−xs)

i.e.
Di(rs) =

nr

nr + ns

Dir +
ns

nr + ns

Dis − nrns

(nr + ns)2
Drs

Suppose now that we are using d2
ij = cii + cjj − 2cij where the cij are similarities. Suppose

also that we scale the similarities such that 0 ≤ cij ≤ 1, ∀i, j, so that d2
ij = 2(1− cij). Then

for centroid cluster analysis:

2(1− ci(rs)) =
2nr

nr + ns

(1− cir) +
2ns

nr + ns

(1− cis)− 2nrns

(nr + ns)2
(1− crs)

⇒ ci(rs) =
nr

nr + ns

cir +
ns

nr + ns

cis − nrns

(nr + ns)2
(1− crs)

So that we obtain a simple update formula for similarities. A feature of centroid cluster
analysis is that small groups tend to be swamped by large groups and their distinctive
features lost.
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M6 (Median method):

Di(rs) =
1

2
Dir +

1

2
Dis − 1

4
Drs

(as if nr = ns in the Centroid method. This actually implies a rather complicated
weighting). A feature of Median cluster analysis is that possibly undue weight may be given
to the latest arrivals in the cluster.

Note 2: The geometric methods M5 and M6 can sometimes give rise to problems since it
is possible to get

Di(rs) ≤ Drs(≤ min(Dir, Dis))

which would lead to an illegal dendrogram. However, it is possible that the advantage of a
geometric interpretation, which helps to tie in these methods with graphical representations,
could outweigh this disadvantage. (See, for example, Everitt et al (2001), and Gordon
(1981)).

Note 3: The algorithm we have described does not say what to do in the case of ties. It is
still the case that, in the presence of ties, many algorithms simply select the pair of groups
to join at random.

Properties of the Dendrogram

The dendrogram resulting from the algorithm has a distance scale associated with it that is
based on the method chosen for calculating distances between groups. It also defines a new
set of distances between individuals, d∗ij, where d∗ij is the threshold distance at which i and
j just become members of the same group.

The d∗ij satisfy the triangle (metric) inequality and also satisfy the ultrametric inequality
which says that

d∗ij ≤ max(d∗ik, d
∗
kj), ∀i, j, k

(check from dendrograms).

A matrix (dij) can be exactly represented by a dendrogram if and only if the dij satisfy the
ultrametric inequality.
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Goodness-of-Fit

The goodness-of-fit of a dendrogram to given data (dij) can be assessed using a number of
measures comparing the dij and the fitted distances d∗ij.

For example,

(i)
∑

i<j |dij − d∗ij|

(ii)
∑

i<j(d
2
ij − d∗2ij ) (c/f Principal components)

(iii)
∑

i<j(dij − d∗ij)
2 (Least squares)

For these measures, some kind of scaling or standardisation would be required to make
them comparable over different sets of data.

Other possiblities include

(iv) Either the Pearson product-moment correlation (coppenetic correlation) or a rank
correlation between dij and d∗ij

(v) A series of measures given by

δµ =
[
∑

i<j |dij − d∗ij|1/µ]µ

[
∑

i<j d
1/µ
ij ]µ

, 0 ≤ µ ≤ 1

Varying µ places greater or lesser emphasis on larger or smaller differences. As µ → 0 the
largest difference dominates.
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4.2 What method of Cluster analysis should we use?

Informally, it depends on the problem. It is probably sensible to try a number of cluster
methods to see how stable the cluster structure is. It is also important to be aware of the
characteristics of different methods and the kind of clusters they are likely to find.

For example, complete-linkage, unweighted and weighted average, centroid and Ward’s
methods all tend to find ‘spherical’ clusters, i.e. clusters with high internal affinity.
Single-linkage often finds elongated, straggly clusters (‘chaining’), especially in large data
sets.

Complete-linkage tends to produce clusters of equal diameter, while Ward’s method tends
to find clusters of equal size (numbers of units). However, Ward’s method is sensitive to
outliers while single-linkage is sensitive to intermediate units.

Both the median and Centroid methods are subject to reversals producing illegal dendro-
grams. The median method weights groups towards the units most recently added, while in
the centroid method the more numerous of two groups joining will dominate the merged
cluster and the characteristics of small groups may be lost.

See Everitt et al for more properties.

We may be attracted to geometrically based methods in order to tie in with a graphical
representation from a multidimensional scaling technique.

We may need to consider which techniques can handle a very large dissimilarity matrix. (A
good algorithm for single-linkage can cluster thousands of units relatively easily).

Formally, Jardine and Sibson (in their book ‘Mathematical Taxonomy’) propose a set of
general mathematical properties that it would seem desirable for any good method to satisfy.

For example,

1. Results produced should not depend on the order of input of individuals. This can
happen if ties are broken either randomly or in some systematic way.

2. The fitted dendrogram should be invariant under any monotonic transformation of
the dij. Only single-linkage and complete-linkage satisfy this criterion.

3. Continuity Criterion
‘Small’ changes in the original data (dij) should only produce ‘small’ changes in the
resulting tree. This seems to be a reasonable criterion since we expect observations to
be subject to error and random variability.
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Examples:

Consider the matrix D = (drs) =
A
B
C




0
1± ε 0

2 1∓ ε 0


, (ε = 0 or >0 and small).

(i)Single-linkage Cluster Analysis

(a) ε = 0 (B is equidistant from A and C).

(drs) =
A
B
C




0
1 0
2 1 0


 (d∗rs) =

A
B
C




0
1 0
1 1 0




(b) .

(drs) =
A
B
C




0
1 + ε 0

2 1− ε 0


 (d∗rs) =

A
B
C




0
1 + ε 0
1 + ε 1− ε 0




(c) .

(drs) =
A
B
C




0
1− ε 0

2 1 + ε 0


 (d∗rs) =

A
B
C




0
1− ε 0
1 + ε 1 + ε 0



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So changes in (d∗rs) and the dendrogram are small. (Note: if ties are handled by
choosing randomly which pair to join first, then for single linkage, the result is the
same whichever pair are joined first and the dendrogram in (a) is eventually obtained).

(ii), (iii)Weighted or unweighted average linkage

(a) ε = 0.

(drs) =
A
B
C




0
1 0
2 1 0


 (d∗rs) =

A
B
C




0
1 0
1 1 0




(As before, if ties are handled ‘properly’).

(b) .

(drs) =
A
B
C




0
1 + ε 0

2 1− ε 0


 (d∗rs) =

A
B
C




0
3
2

+ ε
2

0
3
2

+ ε
2

1− ε 0




(Since δA(BC) = 1
2
[δAB + δAC ] = 1

2
[1 + ε + 2] = 3

2
+ ε

2
).

(c) .

(drs) =
A
B
C




0
1− ε 0

2 1 + ε 0


 (d∗rs) =

A
B
C




0
1− ε 0
3
2

+ ε
2

3
2

+ ε
2

0



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Note: If ties are not handled ‘properly’ and the pair to join is chosen at random, then
in (a) ε = 0 would lead to either

or

completely at random.

(iv)Complete linkage

(a) ε = 0.

(drs) =
A
B
C




0
1 0
2 1 0


 (d∗rs) =

A
B
C




0
1 0
1 1 0




(Again, if ties are handled ‘properly’).

(b) .

(drs) =
A
B
C




0
1 + ε 0

2 1− ε 0


 (d∗rs) =

A
B
C




0
2 0
2 1− ε 0



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(Since δA(BC) = max{δAB, δAC} = 2).

(c) .

(drs) =
A
B
C




0
1− ε 0

2 1 + ε 0


 (d∗rs) =

A
B
C




0
1− ε 0

2 2 0




Thus all these methods, except single-linkage, have large changes in output
associated with small changes in input. That is, in this example, we have shown
that there is a discontinuity associated with distances that are either very close or tied.

4. Fitting-together conditions

Roughly speaking these say that adding or subtracting an individual from the original
data set should make the structure of the dendrogram change relatively little. In
this case clustering will be robust with respect to outliers. Jardine and Sibson find a
precise mathematical formulation of this.

A number of other conditions that should be satisfied are also suggested by Jardine and
Sibson, but single-linkage turns out to be the only method that satisfies them all. It also
has other advantages:

(i) Single-linkage cluster analysis is very fast and efficient to implement. There is a good
algorithm - neither agglomerative nor divisive - which can cope with large amounts of data.

(ii) The results of single-linkage are invariant under monotone transformation since only the
rank order of the distances counts.
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(iii) Ties are easily handled. Can choose which pair of units to join arbitrarily and it makes
no difference to the final dendrogram.

However, single-linkage cluster analysis has one major defect - that it has a tendency to
produce long strung-out clusters, the so-called chaining effect. Such clusters do not have
much connectivity associated with them.

With single-linkage it is also easy for clusters to fail to be identified because of the presence
of ‘intermediates’, as in the example below.
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4.3 The Minimum Spanning Tree (MST) and it’s connection with
Single-Linkage Cluster Analysis

Definition: A spanning tree is a network whose nodes are the n units, whose links are
straight lines joining selected pairs of units with lengths equal to the corresponding distances
(dissimilarities) between units and which satisfies:

(i) All pairs of nodes are connected, either directly or via other node.

(ii) There are no circuits.

The length of a spanning tree is defined as the sum of the lengths of all its links and the
minimum spanning tree (MST) is the spanning tree with minimum length.

The single-linkage dendrogram is closely related to the MST. The link lengths are the
threshold distances in the dendrogram and to find clusters at any distance level δ break
links whose lengths are > δ.

The MST is characterised by the following property.

drs ≥ maximum of link lengths on the unique path from r to s

Use of the MST in graphical ways of depicting MV data

It is important to try to display data graphically to assess clusterings obtained. We have
looked at ways of finding coordinates to represent given distances (or could use fitted
distances such as the ultrametric distances from the dendrogram). However, these can only
be plotted in two dimensions, and therefore it is important to find graphical methods for
displaying full (or further) multivariate information for use with classical scaling, ordinal
scaling, canonical variates analysis, principal components, cluster analysis etc.

Adding the MST to a 2-dimensional plot is useful in highlighting any distortions inherent
in the low dimensional representation of higher order distances.

Note: There are a great many techniques in use for displaying multivariate data. For ex-
ample, adding arrows to represent 3rd and 4th dimensional information is sometimes helpful.
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4.4 Andrews Plots (or Harmonic Curves)

Suppose each individual r is measured on p variables. Then,

xT
r = (xr1, xr2, ..., xrp)

For each xr we can define a function fxr(t) as

fxr(t) =
xr1√

2
+ xr2sin(t) + xr3cos(t) + xr4sin(2t) + ...

Note that
1√
2
, sin(t), cos(t), sin(2t), cos(2t), ... are orthogonal functions over [-π, π]. For

each individual r we can plot the function t → fxr(t) over −π ≤ t ≤ π, and can put a
number of curves on the same plot and compare them.

Note: Curve depends on the order of the variables. Low frequency differences are most
easily noticeable so the ‘most important’ variables should be put first. e.g. use principal
component scores, canonical variate scores, classical scaling axes etc.

These curves contain all the information in the multivariate sample.

also, note that

∫ π

−π

[fxr(t)−fxs(t)]
2dt = π(xr−xs)

T (xr−xs) = π×squared Euclidean distance in all p dimensions

Note: For each t we have a different linear combination of the original variables and plots
of the fxr(t) show how the individuals differ for each combination.
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