
MSc II: Further Statistical Analysis (Autumn Term)
Advanced Multivariate Analysis

3 Procrustes Rotation

Comparison of Two or More Graphical Representations

It is frequently the case that in the course of a multivariate investigation of the structure in
a set of data, a number of configurations are obtained of the same set of sample individuals
represented by coordinates in a low dimensional Euclidean space. Comparisons between the
different pictures may be required.

For example, where a dissimilarity matrix has been calculated using a particular dis-
similarity measure, a number of different such measures might have been calculated
from these data. Moreover a different set, of say, quantitative measurements might have
been made and inter-sample distances calculated from these. Each possible dissimilar-
ity matrix might have been subjected to both a classical and an ordinal scaling analysis.
It is not difficult to see how perhaps 6 or more coordinate representations might be obtained.

We need an analytical technique that will measure the extent to which two or more such
graphical representations differ.

Comparison of two n-point configurations

Suppose that, for example, both classical and ordinal scaling have been carried out on the
same dissimilarity matrix and the two corresponding (p − 1)-dimensional configurations X
and Y of the n points have been obtained.

X (n× (p− 1)) and Y (n× (p− 1))

Since the internal relationships between points in any Euclidean representation remain
the same under, translation, orthogonal rotation, reflection and dilation, we consider one
configuration, say X, as fixed and modify Y using these operations so as to match X as
closely as possible (in the least squares sense).

Since X and Y have origin at the centroid we do not need to consider translation. Also,
if we extend X and Y to p dimensions (adding a p’th coordinate 0) then we do not need
to consider reflection explicitly either, since it may be achieved by a rotation in p dimensions.

The ‘problem’ may be formulated as

Minimize R2 = trace{(X − Y ∗)(X − Y ∗)T} w.r.t. Y ∗

where Y ∗ is obtained from Y by orthogonal rotation and then dilation.
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Note: this corresponds to a sensible least squares measure of the degree of coincidence
between the two configurations X and Y ∗, via

n∑
i=1

{
p∑

j=1

(xij − y∗ij)
2

}
=

n∑
i=1

(xi − y∗i )
T (xi − y∗i ) = tr

{
(X − Y ∗)(X − Y ∗)T

}

Solution: The ‘best’ orthogonal rotation of Y relative to X is Y Q where Q (p× p) is given
by Q = UV T . (This is Procrustes Rotation)

U and V are obtained from the singular value decomposition (SVD) of Y T X, i.e.
Y T X = UΓV T - (see Appendix, details not examinable).

Following rotation, the solution is completed by setting

Y ∗ = cY Q with c =
tr(Γ)

tr(Y Y T )

(This is Procrustes rotation with scaling).

R2
min = tr(XXT ) + c2tr(Y Y T )− 2ctr(Γ)

Note the procedure is not symmetric with respect to X and Y unless we set

tr(XXT ) = tr(Y Y T ) (= 1, usual standardisation)

This gives R2
min = 1− {tr(Γ)}2.

Simultaneous Comparison of g n-point Configurations (Generalized Procrustes Analysis)
[See Krzanowski (Section 5.2)].

The idea of Procrustes Analysis can be generalized to allow a single analysis in which
all g configurations are simultaneously translated, rotated, reflected and scaled so that a
goodness-of-fit criterion is optimized. It is then possible to investigate sources of difference
between the g configurations. The underlying theory and algebraic development are much
more complicated than in the 2 configuration case and the optimization has to be carried
out in a numerical iterative procedure.

The main reference is

Gower, J. (1975) Generalzed Procrustes Analysis. Psychometrika, 40, 33-51.
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Appendix: The Singular Value Decomposition (SVD) of

a Rectangular Matrix

Let X be an arbitrary m× n matrix of rank r. Then, X can be written as

X = σ1u1v
T
1 + σ2u2v

T
2 + . . . + σrurv

T
r (1)

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The numbers σi (the singular values) are real and positive,
the m×1 column vectors ui are orthonormal and the n×1 column vectors vi are orthonormal.
The orthonormal sets u1, . . . ,ur and v1, . . . ,vr can be completed to sets:

u1, . . . ,ur, . . . ,um and, v1, . . . ,vr, . . . ,vn

although this completion is not unique if r + 2 ≤ max(m,n). Let k = min(m,n). Then a
complete singular value decomposition of X is given by

X =
k∑

j=1

σjujv
T
j

where σj = 0 for j = r + 1, . . . , k if r < k.

Thus if we set

U = (u1,u2, . . . ,um)

V = (v1,v2, . . . ,vn)

and,

Γ = (σij) where

{
σjj = σj, j=1, . . . , k;
σij = 0, i6=j.

Then,

X = UΓV T (2)

where,
UT U = UUT = I (3)

V T V = V V T = I (4)

(i.e. U and V are orthogonal matrices).
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Note 1: Expressing X in the form

X = σ1u1v
T
1 + . . . + σkukv

T
k

= (u1, . . . ,uk) diag(σi)




vT
1
...

vT
k




= U∗ diag(σi)V
∗T

(5)

we have,

XXT = U∗ diag(σi)V
∗T V ∗ diag(σi)U

∗T

= U∗ diag(σ2
i )U

∗T (6)

And, similarly

XT X = V ∗ diag(σ2
i )V

∗T (7)

That is, it is the case that the u1, . . . ,ur are the eigenvectors of XXT corresponding to the
r positive eigenvalues σ2

1 ≥ . . . ≥ σ2
r > 0, and the v1, . . . ,vr are the eigenvectors of XT X

corresponding to the same eigenvalues.

Clearly, ui ∝ Xvi and is easily shown that uT
i ui = 1 requires that ui =

1

σi

Xvi.

Similarly, vi =
1

σi

XTui.

Note 2: The Eckart-Young Theorem

If X is of rank r, having the SVD expressed in the form (1), i.e.

X = σ1u1v
T
1 + σ2u2v

T
2 + . . . + σrurv

T
r

then the matrix Y of rank k < r that approximates X most closely in the least squares sense is

Y = σ1u1v
T
1 + . . . + σkukv

T
k (8)

That is, (8) minimises

S(Y ) =
m∑

i=1

n∑
j=1

(xij − yij)
2 = tr

{
(X − Y )(X − Y )T

}

Note 3: If X is a p × p square symmetric matrix, then ui = vi, i = 1, . . . , p and are the
eigenvectors of X while the σi, i = 1, . . . , p are the corresponding eigenvalues. We then have
the Spectral Decomposition Theorem.
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