
MSc II: Further Statistical Analysis (Autumn Term)
Advanced Multivariate Analysis

2 Canonical Variate Analysis (CVA)

For k = 1, . . . , K let Xk be an nk× p data matrix for a sample of nk individuals drawn from
population k and measured on p variables. Assume that the K populations have a common
covariance matrix Σ, but possibly different mean vectors µ1, . . . , µK .
Let xkj be the p× 1 observation vector for the j’th individual in sample k. Then

Xk =




xT
k1

xT
k2
...

xT
knk




.

Let xk be the p× 1 vector of variable means in sample k, so that

xk =
1

nk

nk∑

j=1

xkj, k = 1, . . . , K.

Then the overall p× 1 vector of means, x, is given by

x =
1

n

K∑

k=1

nk∑

j=1

xkj =
1

n

K∑

k=1

nk xk,

where n =
∑K

k=1 nk.

Define the within-samples sums of squares and products matrix, W , and the weighted
between-samples sums of squares and products matrix, B, as follows:

W =
K∑

k=1

nk∑

j=1

(xkj − xk)(xkj − xk)
T

and B =
K∑

k=1

nk (xk − x)(xk − x)T.

In terms of the above notation, we shall define the canonical variates of the observed n× p
data matrix X, where

X =




X1

X2
...

XK




,

and show how the canonical variates can be calculated. We shall denote by xT the general
1× p row vector of X.
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Definition: The r’th canonical variate is that linear compound `T
r x that maximizes the

ratio of between to within group sample variance, subject to having zero within group
correlation with the preceding canonical variates 1, . . ., r − 1.

Thus the canonical variates (the CV’s) are the linear combinations of the original p variables
that separate the K sample mean vectors maximally.

Note 1 As described above, canonical variates are essentially optimal discriminant func-
tions that may be defined without reference to any distributional assumptions. They may
therefore be used purely as an exploratory, hypothesis generating tool to investigate the
differences between the samples. If we are able to assume multivariate normality, then we
can carry out a MANOVA test, and if H0: µ1 = µ2 = . . . = µK , is rejected then we have
some evidence that there is something to investigate.

Note 2 From last year we know that finding the first canonical variate gives us the UIT
statistic for testing H0, involving the largest eigenvalue, λ1, and corresponding eigenvector,
`1, of W−1B. In addition the remaining canonical variates correspond to successive
eigenvalues and eigenvectors of W−1B.

Note 3 Investigating the eigenstructure of W−1B is not quite as straightforward as
investigating the eigenstructure of a covariance or sums-of-squares and products matrix as
in Principal Component Analysis. W−1B is not necessarily symmetric. We have no means
of knowing immediately whether its eigenvalues are real. Moreover its eigenvectors are not
mutually orthogonal. (Real eigenvalues and orthogonal eigenvectors are necessary properties

of real, symmetric matrices.) We therefore choose to work with W − 1
2 BW − 1

2 , which has
the same eigenvalues as W−1B and whose eigenvectors γ, give us the corresponding
eigenvectors, W − 1

2 γ, of W−1B. Since W − 1
2 BW − 1

2 is symmetric and positive semi-definite
its eigenvalues, λi, are nonnegative and the corresponding eigenvectors γi are mutually
orthogonal. From the definitions of W and B, The maximum possible rank of W−1B is
clearly min(p,K − 1). (Clearly we must assume that W is of full rank so that both W−1

and W − 1
2 exist.)

Finding the Canonical Variates

To find the first CV, let y = `Tx and define the ratio of the between-group sample variance
of y to its within-group sample variance as

R(`) =
`T B`/(K − 1)

`T W`/(n−K)
.

Clearly this is invariant under any change of scale in `. We normalize ` by requiring that

`T W` = (n−K),

ie by requiring that the within-group sample variance of y = `Tx is one.
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Thus it is required to maximize

R(`) = `T B`/(K − 1) (1)

subject to
`T W` = (n−K). (2)

We now let W
1
2 be the symmetric square root of W and also let

u =
1√

n−K
W

1
2 `, (3)

so that
` =

√
n−K W − 1

2u (4)

and we can re-express the maximization problem of (1) and (2) in terms of u rather than `.
Substituting (4) into (1) and (2), we obtain the problem:

Maximize
n−K

K − 1
uT W − 1

2 BW − 1
2 u (5)

subject to
uTu = 1. (6)

Now the matrix W − 1
2 BW − 1

2 has p nonnegative eigenvalues λ1 ≥ λ2 ≥ . . . λp ≥ 0, where
some of these may be zero. Denote the corresponding, mutually orthogonal, eigenvectors by
γ1,γ2, . . . , γp. Clearly the maximum in the maximization problem of (5) and (6) is given by

n−K

K − 1
λ1,

and the maximizing u is just γ1. (cf Principal Components Analysis.) Since λ1 is also the
largest eigenvalue of W−1B, this gives us the UIT statistic for 1-way MANOVA as seen last
year.

Translating back using equation (4), we see that the maximizing ` is given by

`1 =
√

n−K W − 1
2 γ1.

Thus the first CV is given by y1 = `T
1 x, where `1 is the eigenvector of W−1B corresponding

to its largest root λ1, and scaled so that

`T
1 [(n−K)−1 W ]`1 = 1,

so that the within-groups variance of y1 is one.
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To find the second CV, it is required to maximize

R(`) = `T B`/(K − 1) (7)

subject to
`T W` = (n−K) (8)

`T W`1 = 0. (9)

Once again set

u =
1√

n−K
W

1
2 ` =⇒ ` =

√
n−K W − 1

2u.

From this, and recalling that `1 =
√

n−K W − 1
2 γ1, the problem becomes:

Maximize
n−K

K − 1
uT W − 1

2 BW − 1
2 u (10)

subject to
uTu = 1 (11)

uT γ1 = 0. (12)

Again by analogy with Principal Components Analysis, it is clear that the maximum is given
by

n−K

K − 1
λ2,

with the maximizing u given by γ2.

Thus the second CV is just y2 = `T
2 x, where `2 =

√
n−K W − 1

2 γ2 is the eigenvector of
W−1B corresponding to its second largest root λ2, and scaled so that

`T
2 [(n−K)−1 W ]`2 = 1.

Thus the within-groups variance of y2 is one. Clearly

`T
2 W`1 = (n−K)γT

2 W − 1
2 WW − 1

2 γ1 = 0

and so the first two canonical variates are uncorrelated within groups.

The Canonical Variate Space

In general `r =
√

n−K W − 1
2 γr, r = 1, . . . , p, where the `r are eigenvectors of W−1B

corresponding to the eigenvalues λ1 ≥ λ2 ≥ . . . λp ≥ 0. We need to specify the scaling for
these eigenvectors.
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Let L = (`1, . . . , `p) and Γ = (γ1, . . . , γp). Clearly ΓT Γ = ΓΓT = I, since the γr are
mutually orthogonal. Then

L =
√

n−K W − 1
2 Γ (13)

Transforming the general vector x of original variables to the general vector y of canonical
variables, we have

y = LTx.

(This transforms the n × p data matrix X to the n × p matrix Y given by Y = XL, the
data matrix referred to canonical axes.)

Thus, from (13), see that the within-groups sample covariance matrix for y is given by

(n−K)−1LT WL = ΓT W − 1
2 WW − 1

2 Γ = I.

That is to say the eigenvectors `1, . . . , `p are scaled so that

LT [(n−K)−1W ]L = I. (14)

Thus the canonical variates y are uncorrelated within groups, and the within-group covari-
ance matrix for y is I. In fact the canonical variates are also uncorrelated between groups.
This is easily seen. Clearly

BL = WLΛ,

where Λ = diag(λr), and pre-multiplying by LT gives the diagonal matrix

LT BL = LT WLΛ = (n−K)Λ from (14). (15)

From the preceding analysis, we see that

(λ1 + . . . + λr)/(λ1 + . . . + λp)

represents the proportion of between-group variation accounted for by the first r canonical
variates.

It is easy to show that the canonical variates are scale invariant in the same sense that
regression is scale invariant - unlike principal components. (Do as an exercise. Set z = Dx,
where D is a diagonal matrix, and consider the first canonical variate.)

In general we use the canonical variates to plot the group centroids with respect to the new
canonical variate axes. Therefore let

yk = LTxk k = 1, . . . , K (16)

Then yk is the p× 1 vector of canonical variable means for sample k.
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What do distances in canonical variate space represent?

Suppose that we take a pair of samples k1, k2. The squared Euclidean distance between yk1

and yk2
is given by

(yk1
− yk2

)T (yk1
− yk2

) = (xk1 − xk2)
T LLT (xk1 − xk2) from (16) (17)

Now, from (13) we have

LLT = (n−K)W − 1
2 ΓΓT W − 1

2 =
(

1

n−K
W

)−1

, (18)

the inverse of the pooled within-groups sample covariance matrix for the original variables.
Thus, substituting (18) in (17), we have

(yk1
− yk2

)T (yk1
− yk2

) = (xk1 − xk2)
T

(
1

n−K
W

)−1

(xk1 − xk2) = D2(xk1 ,xk2), (19)

the squared Mahalanobis distance between the two samples.

This means that, given the K × K matrix of between sample Mahalanobis distances, we
have identified a set of coordinates reproducing these distances in p dimensions. (In fact in
rank(W−1B) dimensions, where rank(W−1B) ≤ min(p,K− 1).) As usual we now locate the
origin at the centroid of the K points yk (= LTxk) representing the sample means in CV
space. Then the new coordinates are given by:

Y c = H




yT
1
...

yT
K


 = H




xT
1
...

xT
K


 L = Xc L,

where, as usual, the K ×K centreing matrix H is given by H = I −K−111T .

Duality between Canonical Variate Analysis and Classical Scaling

It is natural now to ask whether the canonical axes account successively for the maximum
sum of squared between-sample Mahalanobis distances. In other words, is Canonical Variate
Analysis (CVA) the exact dual of Classical Scaling (CS) on the matrix of between-sample
Mahalanobis distances?

The answer is yes - provided that n1 = n2 = . . . = nK . Otherwise the duality is not exact.

To see this: First consider Classical Scaling. This would analyse Y c Y
T
c , since Y c is a Eu-

clidean representation of the Mahalanobis distances, with its origin at the centroid. Now

Y c Y
T
c = Xc LLT X

T
c ,
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and analysing the eigenstructure of this matrix is equivalent to analysing the eigenstructure
of:

LLT X
T
c Xc = (n−K) W−1 Buw from equation (18),

where Buw is the unweighted between-groups sums of squares and products (SSP) matrix.
(That is, Buw is not weighted accorded to the sample sizes nk.)

Thus CS analyses W−1 Buw, whereas CVA analyses W−1 B.

[Aside: Recall

B =
K∑

k=1

nk (xk − x)(xk − x)T , where x =
1

n

K∑

k=1

nk xk,

whereas

Buw =
K∑

k=1

(xk − xuw)(xk − xuw)T , where xuw =
1

K

K∑

k=1

xk. ]

Confidence Circles

Since one of the main uses of CVA is to plot sample mean vectors referred to canonical vari-
ate axes, it is useful to have some idea of the ‘significance’ of the distances between samples
that we observe. To get this we need to assume multivariate normality. That is we assume
that the samples are from K multivariate normal populations, MVN(µk, Σ), k = 1, . . . , K.
To check that there are at least some meaningful distances between the samples, we can
start by carrying out a 1-way MANOVA to test H0: µ1 = µ2 = . . . = µK . If this is rejected,
then it is worth examining plots of the canonical variate mean vectors with respect to, say,
the first two canonical axes. As mentioned last year, for each k we can then superimpose an
approximate circular confidence region for LT µk = µ∗

k in 2-dimensional CV space, centred
on yk. A larger circular confidence region can be calculated for the positions of individuals
from population k.

Confidence regions for the µ∗
k in any subspace of canonical variate space are easily derived

as follows. We have xjk ∼ MVN(µk, Σ), k = 1, . . . , K; j = 1, . . . , nk. Assume that we have
transformed to the s canonical variates (s = rank(W−1B) using

ykj = LT xkj =⇒ ykj ∼ MVN(µ∗
k, L

T ΣL),

where L is the p× s matrix (`1, . . . , `s).

If the degrees of freedom of W , (n−K), are large, then Σ ≈ (n−K)−1 W and so

LT ΣL ≈ (n−K)−1 LT WL = I.
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Then
ykj

approx∼ MVN(µ∗
k, I),

so that
yk

approx∼ MVN(µ∗
k, n

−1
k I),

and √
nk (yk − µ∗

k)
approx∼ MVN(0, I).

It follows that

nk(yk − µ∗
k)

T (yk − µ∗
k)

approx∼ χ2
s

Hence a 100(1 − α)% Confidence Region for the true s × 1 mean vector µ∗
k, relative to the

first s canonical axes, is given by the interior of the hypersphere of radius
√

χ2
s;α/nk centred

at yk. Thus, if we plot the canonical variate means with respect to the first two canonical
axes, we can superimpose on the the plot approximate circular confidence regions, centred

at the yk and of radius
√

χ2
2;α/nk, for the true means µ∗

k. Confidence circles about yk for

the individuals from each group have approximate radius
√

χ2
2;α. (Note: χ2

2;0.05 = 5.99 so

that 95% confidence circles for the µ∗
k have radii (2.45/

√
nk) in two dimensions.)

Note 1: To assess the importance of the original variables in discriminating between the
samples, we can look at the coefficients of these variables in the Canonical Variates. However
the coefficients of different variables are not comparable since they depend on the scale
on which the variables were measured. For the coefficients to be comparable, we need to
scale the original variables to have common with-groups variance. (cf regression coefficients.)

Note 2: The best way to determine the importance of each variable is to try leaving them
out of the analysis in turn and assess the change in some suitable criterion (eg % correctly
classified). See also Stepwise Discriminant Analysis in the texts.

Note 3: Note that confidence circles are fairly robust to non-normality (Central Limit
Theorem).

Note 4: To classify a new unit, x, into one of the K populations, assign x to the population
k for which:

D2(x,xk) = (x− xk)
T [(n−K)−1W ]−1(x− xk)

is minimum. A measure of how well the classification works is the percentage of individual
units correctly classified. This should be calculated by leaving out each unit in turn and
then classifying using the Mahalanobis distances calculated using the remaining units.
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