MSc II: Further Statistical Analysis (Autumn Term)
Advanced Multivariate Analysis

3 Procrustes Rotation

Comparison of Two or More Graphical Representations

It is frequently the case that in the course of a multivariate investigation of the structure in
a set of data, a number of configurations are obtained of the same set of sample individuals
represented by coordinates in a low dimensional Euclidean space. Comparisons between the
different pictures may be required.

For example, where a dissimilarity matrix has been calculated using a particular dis-
similarity measure, a number of different such measures might have been calculated
from these data. Moreover a different set, of say, quantitative measurements might have
been made and inter-sample distances calculated from these. Each possible dissimilar-
ity matrix might have been subjected to both a classical and an ordinal scaling analysis.
It is not difficult to see how perhaps 6 or more coordinate representations might be obtained.

We need an analytical technique that will measure the extent to which two or more such
graphical representations differ.

Comparison of two n-point configurations

Suppose that, for example, both classical and ordinal scaling have been carried out on the
same dissimilarity matrix and the two corresponding (p — 1)-dimensional configurations X
and Y of the n points have been obtained.

X (nx(p=1) and Y (nx(p—1))

Since the internal relationships between points in any Euclidean representation remain
the same under, translation, orthogonal rotation, reflection and dilation, we consider one
configuration, say X, as fixed and modify Y using these operations so as to match X as
closely as possible (in the least squares sense).

Since X and Y have origin at the centroid we do not need to consider translation. Also,
if we extend X and Y to p dimensions (adding a p’th coordinate 0) then we do not need
to consider reflection explicitly either, since it may be achieved by a rotation in p dimensions.

The ‘problem’ may be formulated as

Minimize R? = trace{(X — Y*)(X — Y’} wrt. YV*

where Y* is obtained from Y by orthogonal rotation and then dilation.



Note: this corresponds to a sensible least squares measure of the degree of coincidence
between the two configurations X and Y™, via

> {Z(ﬁfz’j - yfj)z} = (xi—y) (xi—y) =tr {(X - Y*)(X -Y")"}

=1 7j=1 =1

Solution: The ‘best’ orthogonal rotation of Y relative to X is Y'@) where Q) (p x p) is given
by @ = UVT. (This is Procrustes Rotation)

U and V are obtained from the singular value decomposition (SVD) of YTX ie.
YTX = UTVT - (see Appendix, details not examinable).

Following rotation, the solution is completed by setting

_ tr(T)
Y@ withe YT

(This is Procrustes rotation with scaling).

R2, = tr(XXT) + tr(YYT) — 2ctr(T)

min

Note the procedure is not symmetric with respect to X and Y unless we set

tr(XXT) =tr(YY?) (=1, usual standardisation)

This gives B2, =1 — {tr(T)}%.

min

Simultaneous Comparison of g n-point Configurations (Generalized Procrustes Analysis)
[See Krzanowski (Section 5.2)].

The idea of Procrustes Analysis can be generalized to allow a single analysis in which
all g configurations are simultaneously translated, rotated, reflected and scaled so that a
goodness-of-fit criterion is optimized. It is then possible to investigate sources of difference
between the g configurations. The underlying theory and algebraic development are much
more complicated than in the 2 configuration case and the optimization has to be carried
out in a numerical iterative procedure.

The main reference is

Gower, J. (1975) Generalzed Procrustes Analysis. Psychometrika, 40, 33-51.



Appendix: The Singular Value Decomposition (SVD) of
a Rectangular Matrix

Let X be an arbitrary m x n matrix of rank r. Then, X can be written as

T T T
X =oyuvy +0ouevy + ...+ o, v, (1)

where 01 > 09 > ... > 0, > 0. The numbers o; (the singular values) are real and positive,
the m x 1 column vectors u; are orthonormal and the nx1 column vectors v; are orthonormal.
The orthonormal sets uy,...,u, and vy,..., v, can be completed to sets:

Up,...,Upy..., 0, and, Vi,..., V. ..., V,

although this completion is not unique if r + 2 < max(m,n). Let k¥ = min(m,n). Then a
complete singular value decomposition of X is given by

k
X:ZO'J‘U.]'VJT
j=1
where o; =0for j=r+1,... kifr <k.

Thus if we set

and,
jj 0y, J:L SR ka
I' = (0;;) where { L—0, i
Then,
X =urv” (2)
where,
UTU =UUT =1 (3)
Vv =vv? =1 (4)

(i.e. U and V are orthogonal matrices).



Note 1: Expressing X in the form

X = alulvlT +...+ akukvg
vi
= (uy,...,uy) diag(o;) | : (5)
Vi
= U* diag(o;)V*"

we have,

XXT = U* diag(o;)V*'V* diag(o;) U™
= U* diag(o?)U*T
And, similarly

XT'X =V* diag(o})V*" (7)
That is, it is the case that the uy,. .., u, are the eigenvectors of X X7 corresponding to the
r positive eigenvalues 02 > ... > 02 > 0, and the vy,...,v, are the eigenvectors of X7 X

corresponding to the same eigenvalues.

1
Clearly, u; oc Xv; and is easily shown that ulu; = 1 requires that u; = —Xwv;.
i

1
Similarly, v; = —X7Tu;.

Note 2: The Eckart-Young Theorem

If X is of rank r, having the SVD expressed in the form (1), i.e.

T

T T
X =ouyvy +0oouevy + ...+ o, v,

then the matrix Y of rank k < r that approximates X most closely in the least squares sense is

Y = oowvl + ...+ opugvy (8)
That is, (8) minimises
i=1 j=1
Note 3: If X is a p X p square symmetric matrix, then u; = v;, ¢ = 1,...,p and are the
eigenvectors of X while the 0;,7 = 1,..., p are the corresponding eigenvalues. We then have

the Spectral Decomposition Theorem.



