
MSc II: Further Statistical Analysis (Autumn Term)
Advanced Multivariate Analysis

1 Multidimensional Scaling

In general, multidimensional scaling techniques are used for exploratory data analysis. They
are not normally based on any statistical model for the data, and so there are no associated
tests of significance. Their basic purpose is visualization, to enable us to ‘look’ at the
data and so form hypotheses about the relationships between the sample members, or the
relationships between different samples. In addition we may hope to find a few dominant
and interpretable dimensions among the possibly many dimensions required to represent the
data exactly.

These techniques are especially useful when:

(a) data arise directly as an n × n matrix of ‘distances’ (dissimilarities) or similarities
between pairs of data units, rather than as an n× p data matrix.

(b) data consist of a, possibly large, number of measurements that are quantitative, qual-
itative or a mixture of the two and it is convenient to combine these to form similarity
or distance measures between the data units.

So the simplest form of multidimensional scaling starts with a given n × n distance matrix
D = (drs) and seeks to find a configuration of n points in a, preferably low-dimensional,
Euclidean space such that the inter-point distances reflect ‘as closely as possible’ the given
dissimilarities or similarities.

If we can find a good representation in just 2 or 3 dimensions then we can plot the objects
(data units) and obtain a good visual impression of the relationships existing between mem-
bers of the sample. If we are fortunate we may also be able to interpret these dimensions.
This is called reification. (See Arnold and Collins, Applied Statistics 42 (2) 1993.)
However we first need to consider what we mean by matching the given matrix D = (drs)
‘as closely as possible’.

Some questions and Issues

(a) Can the distances (dissimilarities) be reproduced exactly?

The answer to this is yes - provided that the given distances are Euclidean in the first
place. We shall develop a criterion for determining whether the given distances are
Euclidean, and if they are then we shall show that they can be reproduced exactly
in, at most, n − 1 dimensions. eg. Consider a 3 × 3 symmetric matrix of distances
between 3 points:

1



1
2
3




0
3 0
5 4 0


 .

1 2 3

By simple geometry we can construct the equivalent triangle, thus representing the
3 points, exactly in 2 dimensions. Clearly we can do this here because the given
distances satisfy the metric inequality. That is: d13 ≤ d12 + d23.

(b) Is an exact representation a unique representation?

The answer to this question is no. Clearly there can be no unique representation,
{(x1, y1), (x2, y2), (x3, y3)}, of the 3 points in the above example. Such a coordinate
representation in 2-dimensional Euclidean space is unique only up to a translation,
rigid (orthogonal) rotation and reflection of the axes.

In general:

(i) The position of the origin is free. To fix its position we place the origin at the
centroid.

(ii) The orientation of the axes is free within any orthogonal rotation. We shall choose
to use the principal axes - so that the first dimension accounts for the maximum
possible amount of the squared inter-point distances, and the remaining axes
successively account for the maximum amount subject to orthogonality with the
preceding axes. This is a sensible choice because, even if an exact representation
exists in a far higher number of dimensions, we obtain the ‘best’ 1-dimensional,
2-dimensional, 3-dimensional ... representation by restricting to just the first one,
first two, first three ... coordinates respectively.

(iii) The representation may be reflected without altering the representation of the
distances. There is no standard way of selecting a particular reflection.

We shall consider two types of scaling.

(a) Classical Scaling
This method attempts to reproduce the given values of the distances (drs) as exactly
as possible.

(b) Ordinal Scaling
This method attempts to reproduce just the rank ordering of the m given distances
(drs) (where m = 1

2
n(n− 1)) as closely as possible.
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1.1 Classical Scaling (CS)

We start with an n× n distance matrix D = (drs).

Definition: An n× n matrix D = (drs) is called a distance matrix if it is symmetric and

drr = 0 for all r = 1, . . . , n and drs ≥ 0 whenever r 6= s

Definition: An n × n distance matrix D = (drs) is said to be Euclidean if there exists a
configuration of n points, x1, x2, . . ., xn in IRp, for some p, such that

d 2
rs =

p∑

k=1

(xrk − xsk)
2 = (xr − xs)

T (xr − xs) (Pythagorean distance)

[Aside: This definition may seem a little circular. What actually characterizes Euclidean
distances? It is the transformations of the coordinate axes that leave the distances unaltered.
ie translation, orthogonal rotation and reflection. These invariant transformations imply
the Pythagorean formula in the definition.]

So, given any n× n distance matrix D:

(a) Is it Euclidean? We need a criterion to determine this.

(b) If it is Euclidean, how can we find a configuration of points reproducing these given
distances?

(c) If it is not Euclidean, can we find a configuration of points whose Euclidean inter-
point distances match the given (non-Euclidean) distances as closely as possible in
some sense?

[Note: if distances are Euclidean then they satisfy the metric inequality (or triangle inequal-
ity)

drs ≤ drt + dts for all points r, s and t

However the converse is not true. Satisfying the metric inequality is not a sufficient condition
for distances to be Euclidean. We need some other criterion.]

We begin by assuming that D is Euclidean.

Thus there exists a configuration X, an n × p matrix, that represents the n points in
terms of their coordinates in p dimensions such that the calculated Pythagorean distances
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reproduce the given distance matrix D exactly.

X
n× p =




x11 . . . x1p

x21 . . . x2p
...

. . .
...

xn1 . . . xnp


 =




xT
1

xT
2
...

xT
n




Assume now that we have placed the origin at the centroid of this configuration so that
column sums are all zero. That is

n∑
r=1

xrj = 0, j = 1, . . . , p

So that
1T X = 0T and XT 1 = 0 (1)

[Note: If the configuration X does not have the origin as its centroid, we may use the centred
configuration

Xc = H X

where H is the n × n centreing matrix H = I − n−111T . Check this and also check what
happens when X is post-multiplied by the p× p matrix H = p−111T . ]

The distances drs can be calculated directly from the coordinates given in X or we can do
so via the n× n inner product matrix

XXT = B = (brs)

so that

brs = xT
r xs =

p∑
j=1

xrjxsj (2)

Note that B = XXT is positive semi-definite (psd) by result (B.2) in the Notes for MSc
Students. Also note that, because of (1)

n∑
s=1

brs =
n∑

r=1

brs = 0 for all r, s (3)

or
B1 = 0 and 1T B = 0T (3′)

(ie row and column sums of B are all equal to zero. We shall see shortly that B is
independent of the particular coordinate representation of D - apart from the requirement
that the origin is at the centroid.)

We can now calculate the distances drs via B.
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By the definition of Euclidean distance

d2
rs = (xr − xs)

T (xr − xs)

= xT
r xr + xT

s xs − 2xT
r xs

= brr + bss − 2brs from (2)

(4)

Thus from X we can calculate B and hence D. We shall now show that, given D, we can
calculate B, which is therefore independent of the coordinate representation, X, of D. We
assume only that the origin is at the centroid so that the elements in any row or column of
B must sum to zero. (ie (3′) holds.)

Using (3), and summing (4) over r, over s, and then both r and s we obtain

n∑
r=1

d2
rs = T + nbss for all s (column sums) (5)

n∑
s=1

d2
rs = nbrr + T for all r (row sums) (6)

n∑
r=1

n∑
s=1

d2
rs = 2nT (total sum) (7)

where T =
n∑

r=1

brr (trace of B) (8)

Note that, from (7) and (8)

trace(B) ∝
n∑

r=1

n∑
s=1

d2
rs the sum of all squared inter-point distances

Solving (5)− (7) we obtain bss and brr in terms of the d2
rs. Substituting into (4) we then get:

brs = −1

2

[
d2

rs −
1

n

n∑
s=1

d2
rs −

1

n

n∑
r=1

d2
rs +

1

n2

n∑
r=1

n∑
s=1

d2
rs

]

= −1
2

[
d2

rs − d
2

r. − d
2

.s + d
2

..

]
(9)

Thus we can obtain the matrix B(= XXT ) directly from the matrix of Euclidean distances
D = (Drs) in the following way:-

Set A = (−1

2
d 2

rs)

Then B may be obtained by double-centreing A - subtracting the row average from each
element and then subtracting the new column average from each element. (Or vice versa).

B = HAH where H = I − n−111T (10)

giving B = (brs) as in (9). (Check.)
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Clearly B, constructed in this way, has zero row and column sums since H1 = 0 and
1T H = 0T . (We also know this must be true from the definition of B as XXT , with
XT1 = 0, which we used to obtain (9).)

Summarizing If D = (drs) is a given matrix of Euclidean distances, then, by definition, there
exists a corresponding configuration X, in some finite dimensional space, say IRp, with the
origin at the centroid. Defining B = XXT , so that B is psd and has row and column sums
equal to zero, we find that B may be obtained directly from D by setting

A = (−1
2
d 2

rs)

and B = HAH



 (11)

so that brs = ars − ar. − a.s + a...

Thus, if D is a matrix of Euclidean distances, B, defined by (11), is psd. This is a necessary
condition for D to be Euclidean. We shall show, by construction, that this is also a sufficient
condition.

Suppose that B, calculated from D via (11), is psd. Then, from the spectral decomposition
theorem part(ii) (Theorem 1 in Section B) we can factorize B into B = XXT , where X is
an n× k matrix with k = rank(B).

That is, if λ1 ≥ λ2 ≥ . . . ≥ λk > 0 are the nonzero eigenvalues of B and ei, (i = 1, . . . , k) are
the corresponding mutually orthogonal eigenvectors, scaled so that eT

i ei = 1, then Theorem
1 part(ii) tells us that

B =
k∑

i=1

λieie
T
i = EΛET

where Λ = diag(λ1, . . . , λk) and E = (e1, . . . , ek).

[Note that ET E = I, since the ei are mutually orthogonal.]
Let

X = EΛ
1
2 = (

√
λ1e1, . . . ,

√
λkek) (12)

Then B = XXT , and we have factorized B. The columns of X are the mutually orthogonal
eigenvectors of B, scaled so that the sum of squared elements in each eigenvector is equal
to the corresponding eigenvalue.

It remains to show that the configuration of n points in k-dimensional space, represented
by the n× k matrix X, does indeed reproduce the inter-point distances given in D = (drs),
and has its origin at the centroid.

We have:

X = (
√

λ1e1, . . . ,
√

λkek) =




xT
1
...

xT
n


 ,
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Thus the distance squared between points (rows) r and s in the constructed space is given
by (xr − xs)

T (xr − xs), and

(xr − xs)
T (xr − xs) = xT

r xr + xT
s xs − 2xT

r xs

= brr + bss − 2brs,
(13)

since B = XXT .

However B was obtained from D by setting

A = (−1
2
d 2

rs)

and B = HAH





so that
brs = ars − ar. − a.s + a.. (14)

Substituting (14) into (13), and recalling that A is symmetric, it is easy to show that

brr + bss − 2brs = arr + ass − 2ars

and hence, from (14)

(xr − xs)
T (xr − xs) = arr + ass − 2ars

= −2ars

= d 2
rs

as required, since arr = −1
2
d 2

rr = 0 for all r, and −2ars = d 2
rs.

Finally - to check that the origin is at the centroid we need to show that

1T X = 0T ,

ie that the column sums of X are zero. Now

B1 = HAH1 = 0

since H1 = 0. (Check this.)

It follows that the vector 1 is an eigenvector of B corresponding to the eigenvalue 0.
(Note that this implies rank(B) ≤ n− 1 since at least one eigenvalue of B is equal to zero.)

Thus 1 is orthogonal to all the eigenvectors corresponding to the non-zero eigenvalues
λ1, . . . , λk, and is therefore orthogonal to all the columns of X = (

√
λ1e1, . . . ,

√
λkek). Thus

1T X = 0T ,

7



as required, and the centre of gravity (or centroid) of configuration X lies at the origin.

This proves the sufficiency.

Thus Given a distance matrix D, the distances are Euclidean ⇐⇒ B, as calculated in (11),
is positive semi-definite.

The sufficiency proof shows how to calculate a corresponding configuation in k-dimensional
space, where k = rank(B), so that the distances are reproduced exactly and the origin is at
the centroid. There are clearly infinitely many possible factorizations B = XXT correspond-
ing to infinitely many possible axis orientations, but the method of construction given in the
sufficiency proof refers the configuration to principal axes and has certain optimal properties.

Recall, from (7) and (8), that

trace(B) = λ1 + . . . + λk =
1

2n

n∑
r=1

n∑
s=1

d 2
rs

Now take the first ` coordinates (
√

λ1e1, . . . ,
√

λ`e`). It can be shown (see Mardia, Kent and
Bibby, Section 14.4) that

λ1 + . . . + λ` =
1

2n

n∑
r=1

n∑
s=1

d (`)2
rs

where d
(`)2
rs is the squared Euclidean distance between points r and s based on the first `

coordinates. This implies that

λ`+1 + . . . + λk =
1

2n

n∑
r=1

n∑
s=1

(d 2
rs − d (`)2

rs ).

Thus the percentage of the total sum of squared distances accounted for in the first ` dimen-
sions is

λ1 + . . . + λ`

λ1 + . . . + λk

× 100,

and this is the maximum possible sum of the squared distances that can be accounted for
in ` dimensions.

Thus for any `, 1 ≤ ` ≤ k, we have the best possible `-dimensional representation.

Now suppose that the distances are not Euclidean. Then B is not psd. However if we choose,
say, the first ` eigenvalues, where these are ’large positive’, and set

X = (
√

λ1e1, . . . ,
√

λke`)

as before, then it can be shown (again see Mardia, Kent and Bibby) that this is the optimal
`-dimensional Euclidean representation of the given distances.
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Similarity Matrices

Suppose that what we are given is a matrix of similarities between n objects. (We will
discuss later some of the commonly used similarity measures.)

Definition: An n× n matrix C = (crs) is called a similarity matrix if it is symmetric and if

crs ≤ crr for all r, s (15)

To use the classical scaling (CS) technique just described we need to transform the similarities
to distances. The usual transformation is given by:

d 2
rs = crr + css − 2crs (16)

so that the resulting matrix D is symmetric, with drr = 0 for all r and d 2
rs ≥ 0 for all r and

s. (Compare with equation (4)).

It is easily shown (see Mardia, Kent and Bibby, Section 14.2.3) that the B matrix
calculated from the above distance matrix is just HCH, the double-centred version of
the similarity matrix C. Thus the distances given by (16) are exactly Euclidean ⇐⇒
the similarity matrix C is psd. Fortunately many of the standard similarity measures are psd.

We now look at some of the distance (dissimilarity) and similarity measures used in practice.

1.2 Distance/Dissimilarity Matrices

Assume first that we do not observe the distance matrix directly, but that we observe an
n × p data matrix X in which the p variables are quantitative and continuous. Assume
further that X has been means corrected (ie centred) so that the column sums are all zero.

A. Pythagorean (Euclidean) Distance and the Duality between
Classical Scaling and Principal Components Analysis

Suppose that D is the n × n matrix of Pythagorean distances between the n points in p
dimensions calculated from the n × p data matrix X. Let S be the maximum likelihood
estimate of the population covariance matrix, so that nS = XT X

CS approach
To carry out a classical scaling analysis on these data we would calculate D from X, form
the matrix A = (−1

2
d 2

rs) and double-centre it to obtain

B = HAH

From the necessity proof earlier, we know in fact that

B = XXT , (17)
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where X is the original, means corrected n× p data matrix. Clearly B is psd. In a Classical
Scaling analysis we would then proceed to factorize B by finding its nonzero (> 0) eigenvalues
λ1, . . . , λk and the associated eigenvectors e1, . . . , ek, and forming

X∗ = (
√

λ1e1, . . . ,
√

λkek)

so that
B = X∗X∗T . (18)

Thus the CS procedure just factorizes B = XXT differently (and is actually equivalent
to an orthogonal rotation of the original p axes). The CS factorization has the optimal
properties already noted.

[Note that
k = rank(B) ≤ min{n− 1, p} (assuming n > p)

since we know that B has at least one zero eigenvalue.]

Principal Components (PCA) approach
To carry out a Principal Components Analysis we form the p × p sums-of-squares-and-
products (SSP) matrix

nS = XT X.

This is the outer product matrix.

In a Principal Components Analysis we would then proceed to find the eigenvalues and
corresponding eigenvectors of XT X = nS to obtain principal component sample variances,
coefficients and hence scores. [Recall that the eigenvalues of S are the principal component
sample variances and so the eigenvalues of XT X are just n times the component variances.
The eigenvectors of S and XT X are identical.]

Thus CS carries out an eigenanalysis on the n × n matrix B = XXT and PCA carries out
an eigenanalysis on the p × p matrix nS = XT X. The duality between CS and PCA is a
consequence of the relationship between the eigenstructure of these two matrices.

More precisely: From Theorem 3 in Section B of the Notes (see also Mardia, Kent and
Bibby, Theorem A.6.2) it follows that the non-zero eigenvalues of XXT and XT X are
identical and the corresponding eigenvectors are related by a simple linear transformation.

To see this, let λi, fi, i = 1, . . . k be the non-zero eigenvalues and corresponding stan-
dardized eigenvectors of XT X = nS, so that fT

i fi = 1 for all i. Then, for each i,
λi = n × Variance(component i), Xfi = ci, the vector of scores on component i, and of
course

XT Xfi = λi fi. (19)

Premultiplying equation (19) by X gives

(XXT ) Xfi = λi Xfi
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so that the λi are the non-zero eigenvalues of XXT as well as XT X (hence the notation),
and the Xfi are eigenvectors of XXT corresponding to the λi. Thus for each i,

Xfi ∝ ei,

where ei is the standardized eigenvector of XXT corresponding to λi. We need to identify
the scaling of Xfi.

Since X is means corrected, Xfi = ci, the vector of component scores, has a sample mean
of zero, and so the sum of the squared elements of Xfi is just n times the sample variance
of component i, which is equal to λi. Thus

Xfi =
√

λi ei,

and the n × 1 vector of scores on Principal Component i is just the n × 1 vector of
coodinates in the i’th dimension of the Classical Scaling solution. The results of PCA are
exactly equivalent to the results of CS if we carry out the latter procedure on the matrix of
Pythagorean distances calculated from X. This also confirms (from our knowledge of PCA)
that the CS axes account successively for the largest amount of the total variance, which is
proportional to the total sum of squared distances.

Analysing the p× p matrix XT X using PCA is an example of an ‘R-mode’ analysis

Analysing the n× n matrix XXT using CS is an example of a ‘Q-mode’ analysis

In this case we should use PCA rather than CS since the p× p matrix XT X is likely to be
smaller than the n× n matrix XXT .

B. Mahalanobis Distance

A problem with Principal Component Analysis (PCA) is that the components are not
invariant under changes in the units of measurement. One method of overcoming this
is to use the correlation matrix rather than the covariance matrix, that is to re-scale
each variable so that it has unit sample variance. Then Classical Scaling (CS), using the
Euclidean distances based on the re-scaled variables, is equivalent to PCA on the correlation
matrix. The effect is to equalize the importance of each variable in the sample. However no
account is taken of the correlation between the variables. A measure that takes account of
both differing variances and the correlation between variables is the Mahalanobis distance.
Mahalanobis distance is scale invariant.

Consider a sample of n units measured on 2 variables, x1 and x2, and consider a plot of x2

versus x1 that looks like this:
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where C indicates the centroid and A and B represent two particular data points. Clearly
x1 and x2 are highly correlated. Looking at the plot we ‘see’ that the distance BC is greater
that the distance AC. However we may conjecture that, in probabilistic terms, BC and
AC are comparable. Suppose that the observations x = (x1, x2)

T follow a bivariate normal
distribution x ∼ BVN(µ, Σ), with probability density function:

f(x) =
1

2π|Σ| 12
exp

{
−1

2
(x− µ)T Σ−1(x− µ)

}

Contours of equal probability density are given by:

{x : (x− µ)T Σ−1(x− µ) = constant},

as in the plot overleaf.
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Points on the same elliptical contour are equally likely and should therefore appear equally
distant from µ, denoted by O. We need to transform this elliptical contour into a circular
contour centred on O = µ. The Mahalanobis distance achieves this.

Sample Mahalanobis distance D(xr,xs) between data units r and s is given by:

D2(xr,xs) = (xr − xs)
T S−1 (xr − xs),

where S is the p × p sample covariance matrix (with divisor n). If S is of full rank then,

from Theorem 2 in Section B, we can find the symmetric square root S−
1
2 of S−1, so that

S−
1
2 S−

1
2 = S−1

This can be used to find coordinates of n points in p-dimensional space whose Pythagorean
inter-point distances reproduce the original Mahalanobis distances exactly and where ellip-
tical contours of equal probability density are transformed to circular contours in the case
of multivariate normality. Set

z = S−
1
2 x r = 1, . . . , n

so that we have a new n× p matrix Z where

Z =




zT
1

zT
2
...

zT
n


 = X S−

1
2

Now
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Sz = S−
1
2 S S−

1
2 = I (from C.8)

so that the new variables, the elements of the general observation vector z, have sample
variances equal to one and sample correlations all equal to zero. [Since the data matrix X
is means corrected, so is the new matrix Z. Z is the standardized data matrix] Clearly, in
the case of multivariate normality, contours of equal probability density are given by:

{z : zT z = constant},

i.e they are circular.

We now have

(zr − zs)
T (zr − zs) = (xr − xs)

T S−1 (xr − xs)

= D2(xr,xs)

so that the Euclidean distances between the uncorrelated z’s are exactly the Mahalanobis
distances between the corresponding x’s. If we calculate the matrix of Mahalanobis
distances and carry out a CS analysis, then we obtain new coordinate axes that account
successively for the maximum possible amount of squared Mahalanobis distances.

A more common use of Mahalanobis distance is to measure distances between samples that
are assumed to come from populations with different mean vectors but with a common
covariance matrix Σ.

Then if xr is the p× 1 vector of sample means for the sample from population r, and xs is
the p×1 vector of sample means for the sample from population s, the Mahalanobis distance
between the two samples is defined as

D 2(xr,xs) = (xr − xs)
T S−1 (xr − xs),

where S is the pooled within-sample covariance matrix across all samples. (As used here, S
is the maximum likelihood estimate of Σ.)

Note: For 2 samples (comparing 2 mean vectors), recall that the Hotelling T 2 statistic is
proportional to D 2(x1,x2) and is related to Fisher’s linear discriminant function. Recall
also that extending to K > 2 samples gives us 1-way MANOVA and r ≤ min{K − 1, p}
corresponding canonical variates that are analogous to Fisher’s discriminant function. We
shall see that there is a duality between CS carried out on the matrix of between-sample
Mahalanobis distances (Q-mode analysis) and Canonical Variate Analysis, an R-mode
method based on between and within sample covariance matrices and closely related to
1-way MANOVA. (cf last year’s notes.)
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C. The Minkowski metrics

We assume still that we have a means-centred n× p data matrix X measuring n units on p
quantitative, continuous variables. Then, for each R = 1, 2, . . . we can define a distance drs

between units r and s as

drs =

{
p∑

j=1

|xrj − xsj|R
} 1

R

As indicated by the name, all these distances satisfy the metric or triangle inequality.
However only R = 2 (Pythagorean distance) gives us Euclidean distances.

Setting R = 1 gives us the city block metric (or Manhattan city block metric)

drs =

p∑
j=1

|xrj − xsj|.

Clearly this is not Euclidean. In particular it is not invariant under an orthogonal rotation
of axes.

R = ∞ =⇒ drs = max
j

|xrj − xsj|

D. The Wilkinson metric for (0, 1) data

This metric is defined for a particular type of binary data presented as an initial n× n data
matrix X. It is best described using an example. The one used here is taken from Chatfield
and Collins.

Example To assess relationships in a class of 24 primary school children, each child was
asked to select 3 other children that they would like to sit next to. Thus the initial data
consist of an 24× 24 matrix of binary data, with both rows and columns indexed by the 24
children. It is not a similarity or distance matrix however. Each row r, for example, contains
exactly three 1’s in the columns that correspond to the children chosen by child r. All other
elements in the row are coded 0. (See data handout.) We choose as the distance measure
from child r to child s, the number of steps in a shortest route from child r to child s, via
the choices of other children where necessary. Thus if child r chose child s initially, drs = 1.
In this example d1 5 = d1 6 = d1 14 = 1. However d1 7 = 2, since we can go from child 1
to child 7, via child 5. If there is no route from child r to child s, then drs is set to n+1 = 25.

Note: This distance (or dissimilarity) matrix need not be symmetric. The shortest route
from s to r is not necessarily the same length as the shortest route from r to s. However a
version of the triangle inequality holds.

drs ≤ drt + dts for all r, s and t,
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where the order of the subscripts is important.

This measure is often used to investigate relationships among individuals. Eg dominance
relationships in groups of animals.

It was also used by D. G. Kendall to measure distances between French Départements,
administrative areas of France. Where 2 Départements have a common boundary, the
corresponding data element is set to 1. Otherwise it is set to 0. The resulting distance
matrix calculated using the Wilkinson metric is symmetric. Using CS it is possible to obtain
a good reconstruction of the map of France.

Calculation of this metric is nontrivial. It can be done:

(i) by matrix methods, looking at successive powers of the data matrix X, X2, X3, . . .,
where drs = k if the (r, s)’th element becomes nonzero for the first time in Xk;

(ii) by graph theoretic methods, where children are represented as nodes in a graph, the 1’s
in the data matrix indicated directed links of length 1, and the Wilkinson distances are the
lengths of shortest routes from each node to every other node.

1.3 Similarity Measures for Presence/Absence Data

Our n × p data matrix X is now assumed to contain binary data indicating the presence
(xri=1) or absence (xri=0) of each characteristic or feature i, i = 1, . . . , p, in each individual
r, r = 1, . . . , n. For example, we may indicate the presence or absence of qualitative features
on a fossil or skull, of types of artefact in a grave, of plant species in a given area etc. If we
have p possible attributes, then for each pair of data units r, s we let

a =

p∑
i=1

xrixsi = No of (1, 1) occurrences

b =

p∑
i=1

(1− xri)xsi = No of (0, 1) occurrences

c =

p∑
i=1

xri(1− xsi) = No of (1, 0) occurrences

d =

p∑
i=1

(1− xri)(1− xsi) = No of (0, 0) occurrences

Then p = a + b + c + d, the total number of characteristics considered. We consider 3
different similarity measures.
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A. The Simple Matching Coefficient (Similarity matrix C)

Define the similarity crs between r and s by setting

crs =
a + d

p
.

This similarity measure has some unsatisfactory features however. Often the presence of the
same attribute in 2 individuals says more about their likeness than the absence of the same
attribute. Moreover d can be made as large as we choose by considering more and more
attributes that are not present in either individual. And if d becomes large, then so does the
similarity crs. For example. in Ecology, when comparing plant communities, the occurrence
of the same species in two areas says more about the similarity of the areas than the absence
of a particular species from both. There could be completely different species present in two
areas, but an artificially high similarity because of the many species not present in either area.

B. The Ecological Coefficient (Similarity matrix C ′)

Set

c′rs =
a

p
,

so that c′rs is the number of attributes present in both r and s as a proportion of all the
attributes considered.

C. Jaccard’s Coefficient (Similarity matrix C ′′)

Set

c′′rs =
a

p− d
,

so that c′′rs is the number of attributes present in both r and s as a proportion of the number
of attributes present in either r, s or both.

Note: Both C (simple matching coefficient) and C ′ (ecological coefficient) are positive semi-
definite since:

C ′ = 1
p
X XT

and C = 1
p

[
XXT + (J −X)(J −X)T

] ,

where J is the n× p matrix consisting entirely of 1’s.

We saw earlier that the usual transformation from similarities to distances is

d 2
rs = crr + css − 2crs,
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so that C, when double-centred, is just the B matrix that would be obtained by setting
A = (−1

2
d2

rs) and double-centreing it. Thus if C is psd, then the distances defined above are
Euclidean, and a Euclidean representation in a low-dimensional space is a reasonable goal.
CS is carried out by double-centreing C to form B and then factorizing B via its eigen-
decomposition to obtain B = X∗X∗T , where X∗ is the required coordinate representation
of the original similarity matrix.

Consider a well-known example of the analysis of presence/absence data. On an archaeo-
logical site n graves have been excavated and the presence or absence of p different varieties
of pottery has been recorded. We can use either the simple matching coefficient or the
ecological coefficient to calculate an n × n similarity matrix between the graves. It is
of interest to determine the chronological ordering of the graves. This is an example of
seriation, in which the objective is to pick out a one-dimensional structure or ordering.
That is, we expect the data to be parameterized by a single axis or scale - in this case time.
Other orderings might relate to attitude, performance, degree of satisfaction etc.

If we are looking to see whether the data are essentially one-dimensional, it is essential to
represent (and plot) the data in at least 2 dimensions. This is because, although the data may
really be one-dimensional, the points, as represented in a Euclidean space, can sometimes lie
along a curve rather than A straight line. This is the famous ‘horseshoe’ effect, which occurs
because it is often possible to measure accurately the distances between objects that are
close together, but to be much less accurate in assessing distances between objects that are
far apart. Thus large and moderate distances may appear to be of a similar magnitude. For
example, using the grave data and the ecological coefficient c′rs, we have c′rs = 0 whenever
the graves r and s have no artefacts in common. This implies that:

d 2
rs = c′rr + c′ss =

No of artefact types in r plus no in s

Total No of artefact types

A plot in 2 dimensions might exhibit the ‘horseshoe’ effect, with the furthest points pulled
together, but a clear ordering along the curve. A one-dimensional Euclidean representation
would fail to detect the obvious one-dimensional ordering. (See Mardia, Kent and Bibby,
p412, for an artificial example of this phenomenon).

Gower’s Similarity Coefficient

Suppose now that we measure the n data units on a (possibly large) mixture of quantitative
and qualitative variables, where some measurements may be missing.

In such cases the similarity coefficient devised by Gower can be used, and if there are no
missing values then Gower’s similarity coefficient is psd and the corresponding distances
are Euclidean. Gower’s similarity measure copes with a mix of qualitative and quantitative
variables, for each of which a different method of calculating similarity may be appropriate.
The method calculates an average of similarities, each based on one variable and each scaled
to be between 0 and 1. See Gower (1971), and the handout, for details.
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1.4 Ordinal Scaling (CS)

As in the case of Classical Scaling, we start with a given n × n matrix of dissimilarities
between objects, which we shall now denote by (δrs). It is required to find a configuration
of n points in, say, k dimensions, whose calculated Euclidean inter-point distances are in
’good agreement’ with the given dissimilarities (δrs).

In Ordinal Scaling (OS), we attempt to match only the rank order of the given dissimilarities.
This is reasonable, since it is often the case that the exact numerical values observed have
little meaning. At the very least, they will be subject to measurement error. Moreover, it
is often the case that with psychological or social science data, the dissimilarities may be
directly observed as purely ordinal in character.

As with CS, there is no unique location, axis orientation or reflection. In addition, with OS
there is no implied scale, since only the ordinal properties of the dissimilarities have meaning.

As before, we place the origin at the centroid of any Euclidean representation. The scale is
fixed by requiring that the average squared distance from the origin is equal to one. That
is, in the Euclidean representation,

1

n

n∑
i=1

d 2
i0 = 1.

In Ordinal Scaling, no orientation of the axes is set a priori, and we need to decide at the
outset the dimension k of the required representation. To carry out Ordinal Scaling, there
is no analytical procedure analogous to the eigen-decomposition of B in Classical Scaling.
An iterative optimization procedure is required.

Given the dissimilarities (δrs), and the dimension k of the required Euclidean representation,
we proceed as follows. Begin by ordering the δrs in ascending order

δr1,s1 ≤ δr2,s2 ≤ . . . ≤ δrm,sm ,

where m is generally equal to 1
2
n(n− 1).

Suppose now that we have a proposed configuration X, of n points in k dimensions, with
the origin at the centroid. Let the corresponding inter-point distances be given by (drs). We
need some quantitative criterion to measure how well X represents the given dissimilarities.
We can then try to optimize the criterion by making changes in X.

Consider first what would be regarded as a perfect match between the drs calculated from
X and the given δrs.
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1. The Monotone Requirement: We shall require that

δrs < δtu =⇒ drs ≤ dtu

This is referred to as the primary monotone requirement. [The secondary monotone
requirement requires that drs < dtu whenever δrs < δtu, and is generally regarded as
too restrictive.]

2. Treatment of Ties: What if δrs = δtu? We could require that drs = dtu. This is
the secondary approach ties and is also too restrictive in general. We shall take the
primary approach and assume no restrictions on the way ties in the δrs are broken. [ie
if δrs = δtu then we allow either drs ≤ dtu or drs > dtu.]

Any numbers d∗rs satisfying just the primary monotone requirement

δrs < δtu =⇒ d∗rs ≤ d∗tu (20)

are said to be monotonically related to the δrs and we shall regard this as sufficient for
the purpose of reproducing the rank ordering of the δrs.

If we now have a set of distances drs calculated from a proposed configuration X, we need a
way of measuring how far the drs are from reproducing the rank ordering of the δrs; ie how
far are they from satisfying (20). Define the (squared) stress of X by:

S2(X) = min
∑
r<s

(d∗rs − drs)
2

/ ∑
r<s

d 2
rs, (21)

where the minimum is taken over all sets of numbers d∗rs that are monotonically related
to the δrs. This is a Least Squares criterion. The d∗rs that minimize (21) represent
the least squares monotone regression of drs on δrs, and S2(X), given by (21), repre-
sents the extent to which the rank order of the drs calculated from X differs from the
rank order of the δrs. The denominator in (21) standardizes the stress and makes it
invariant under any uniform expansion or contraction of the configuration X with its ori-
gin at the centroid. It is also invariant under translation and orthogonal rotation of the axes.

There are efficient routines for carrying out LS monotone regression. Essentially it is
required to identify the optimal partition of the ordered δrs into consecutive blocks for
which the corresponding drs are averaged to give a common fitted d∗ for the block. The
fitted d∗’s are then a strictly increasing function of the block number. (See Kruskal (1965)
in Psychometrika 19, pp 115-129.) The algorithm is incorporated into many statistical
packages.
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Thus, given the matrix of dissimilarities (δrs), it is required to find a configuration X of n
points in k dimensions such that S(X), calculated from a LS monotone regression of the
corresponding inter-point distances drs on the δrs (as in (21)), is minimized.

Outline of the Algorithm

1. Choose an initial configuration X1 and set n=1.

2. Calculate S(Xn), which is a function of the elements of Xn.

3. Move a certain distance in the steepest descent direction by making changes in Xn so
as to decrease S(Xn). (To carry out this step it may be noted that S(Xn) is explicitly
differentiable with respect to the nk elements of Xn, and thus the direction of steepest
descent can be identified.) Set the new configuration equal to Xn+1, set n to n + 1 and
return to Step 2 - unless a convergence criterion is satisfied.

Notes:
1. The steepest descent algorithm is not normally a very efficient optimization algorithm
and in general many better algorithms exist. However the objective function S(X) is not
‘nicely shaped’ - in particular it is not locally quadratic and more sophisticated optimization
methods do not seem to work well.

2. The initial configuration could be the classical scaling solution, or could be selected
randomly. However S(X) usually has many local minima and in practice it is not possible
to distinguish whether the minimum found is local or global. Moreover, with fewer than
around 30 points, it is possible for the points in a configuration X to move position by
quite an amount without changing S(X). For these reasons it is often recommended that a
number of different starting configurations are used.

3. It is not possible to get the best k-dimensional solution directly from the best (k + 1)-
dimensional solution as in classical scaling. That is to say, the best k-dimensional solution
is not a k-dimensional subspace of the best (k + 1)-dimensional solution. For this reason,
although the origin and scale are standardized, fixing a particular orientation of the axes is
not really an issue. However we can always refer a configuration to principal axes if required.

4. For each proposed dimensionality k, the configuration that has the smallest stress is called
the best fitting configuration in k dimensions. Set

Sk = min
X(n×k)

S(X)

To choose the correct dimension, start with a dimension j that is higher than expected
(say dimension 5 - or dimension k + 3, where k is the expected dimensionality) and find
Sj, Sj−1, . . ., S1. Going from any dimension k + 1 to k, we can project the best k + 1
dimensional configuration into k dimensions to provide a starting configuration for the next
stage, and this turns out to be a good way of homing in on the global minimum in the
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lower dimensions, say in 2 and 3 dimensions. Recall also that the ‘horseshoe’ effect suggests
starting in a higher-dimensional space than the dimensionality expected. Plotting Sk versus
k can suggest the correct dimension to use, perhaps where an ‘elbow’ is observable and the
stress is ‘low’.

5. No significance tests are possible using the stress criterion S(X). However researchers
have sometimes developed rules of thumb to assess the values of stress obtained. For
example, one rule suggests: Sk ≥ 0.2, poor; 0.10 ≤ Sk ≤ 0.15, acceptable; 0.05 ≤ Sk < 0.10,
satisfactory; Sk < 0.05, excellent. However it is now known that these criteria are much too
simplistic. Stress will inevitably increase with increasing n and decrease with increasing k,
and judging the quality of the representation is inevitably subjective to a large extent.

Some Advantages of OS over CS

1. Ordinal Scaling can easily cope with missing values in the dissimilarity ,matrix (δrs).
They are just omitted from the monotone regression and hence the stress calculation. Note
that, as the example with road distances shows, reproducing the rank order of the δrs

generally imposes very tight constraints on the positions of the data points, and having
some missing values may affect the optimal configuration very little.

2. Ordinal Scaling can be adjusted to cope with asymmetric matrices. (Cf the dis-
tance/dissimilarity matrix calculated from children’s preference data.) All dissimilarities
can be included in the LS monotone regression and in the value of stress S(X), although
the value of stress will obviously be increased since different dissimilarities correspond to
the same distance.
(See the accompanying handout for the OS results on the children data.)

3. There is a better chance of representing the dissimilarities in a low number of dimensions
using Ordinal Scaling since the OS criterion is less restrictive.

4. Ordinal Scaling is a more realistic procedure if the ‘distances’ are not believable as precise
measurements.
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