
MSc II: Further Statistical Analysis (Autumn Term)
Advanced Multivariate Analysis

5 Factor Analysis

Roughly speaking, the aim of Factor Analysis, as with Principal Components Analysis, is
to replace the original variables by a smaller number of ‘underlying’ variables. However,
there are important differences between the two techniques. For example,

1. Principal Components Analysis (PCA) can be regarded as a technique for accounting
maximally for the variances of the responses, xi (i = 1, ..., p). On the other hand, Factor
Analysis (FA) is a method that accounts maximally for the covariances of the responses.

2. PCA is just a linear transformation (translation and orthogonal rotation) which, for a
particular scaling of the variables, gives the best k-dimensional representation of the data
in terms of the squared Euclidean distance (or equivalently in terms of variances). FA is
based on a statistical model for the data.

Factor analysis was originally developed by psychologists and the starting point was in
the field of education, with a paper by Spearman concerned with data on exam marks.
Marks on six exams for a sample of children were obtained. Looking at the corresponding
covariance matrix, Spearman noticed that in each row, the values decreased from left to
right, roughly proportionally. i.e given

S =


s11 s12 · · · s16
s21 s22 · · · s26
...

...
s61 s62 · · · s66

 = (sij)

sik
sjk

appeared to be independent of k, for all i, j.

Spearman proposed the following model to explain this.

Suppose xi = λif + ei, i = 1, . . . , 6, where

f is a random variable common to all xi, i = 1, . . . , 6

ei is a random variable specific to xi, i = 1, . . . , 6

Assume further that f, e1, . . . , e6 are all uncorrelated, so that the covariances between them
are zero. Then,
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Cov(xi, xj) = σij = Cov(λif + ei, λjf + ej)

= λiλjVar(f)

so that,
σik
σjk

=
λi
λj

is independent of k.

This would account for the proportionality. Note, that this model replaces the 15 covariances
in Σ = (σij) by the 6 parameters λi, i = 1, . . . , 6.

f is regarded as an underlying (unmeasurable directly) common factor.

λ1, . . . , λ6 are called factor loadings

e1, . . . , e6 are called the specific or unique factors (e.g. specific to the particular examination
subject, say mathematics or classics).

5.1 The general k-factor model

Let x = (x1, . . . , xp)
T be a random vector with mean vector µ and covariance matrix Σ.

Consider the model:

x1 = λ11f1 + . . .+ λ1kfk + e1 + µ1

x2 = λ21f1 + . . .+ λ2kfk + e2 + µ2

...

xp = λp1f1 + . . .+ λpkfk + ep + µp

(1)

where,

fj is the jth common factor random variable.
λij is the parameter representing the importance of the jth factor in the composition of xi
(i.e. the loading of xi on the jth common factor.
ei is the ith specific factor random variable.

We shall require that:

(i) The fi be uncorrelated, each with mean 0 and variance 1.
(ii) The ei be uncorrelated, each with mean 0 and with Var(ei)= ψi.
(iii) Cov(fi, ej) = 0, for all i = 1, . . . , k and j = 1, . . . , p.

From this model, the variance and covariances of the x1, . . . , xp can be expressed in terms
of the model parameters λi and ψi.
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Clearly,

Var(xi) = σii = λ2i1 + λ2i2 + . . .+ λ2ik + ψi

= h2i + ψi

(2)

where,

h2i is called the communality of xi, i.e. the variance of xi accounted for by its dependence
on the k common factors, and
ψi is called the specific or unique variance of xi.

Also,

Cov(xi, xj) = Cov(λi1f1 + . . .+ λikfk + ei, λj1f1 + . . .+ λjkfk + ej)

= λi1λj1 + λi2λj2 + . . .+ λikλjk
(3)

Thus, the covariance is entirely due to the common dependence on the factors f1, . . . , fk.

In matrix form,

Σ = ΛΛT +Ψ (4)

where,

Λ =


λ11 λ12 . . . λ1k
λ21 λ22 . . . λ2k
...
λp1 λp2 . . . λpk

 and Ψ = diag(ψi) =


ψ1 0 . . . 0
0 ψ2 . . . 0
...
0 0 . . . ψp


Thus, model (1), subject to conditions (i), (ii) and (iii) can be written as

x = Λf + e+ µ (5)

subject to

E(f) = 0,Cov(f , f) = I (6)

E(e) = 0,Cov(e, e) = Ψ (7)

Cov(f , e) = 0 (8)

Definition: The k-factor model holds for the random vector x if x can be written in the
form (5) and (6)-(8) hold.
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Theorem 1
The k-factor model holds for x if and only if the covariance matrix, Σ, of x can be written
in the form

Σ = ΛΛT +Ψ

Proof: (See Mardia, Kent and Bibby).

Theorem 2
Factor analysis is unaffected by a rescaling of the variables.

Proof: As Exercise.

[Hint: Set y = Cx where C = diag(ci). Find Cov(y,y) and apply Theorem 1. Give the
factor loading matrix for y]

Thus, unlike PCA, FA is scale-free. This gets rid of one form of non-uniqueness. However,
there is now another form of non-uniqueness.

Non-uniqueness of Factor Loadings

Suppose the k-factor model holds for x. Then,

x = Λf + e+ µ, and (6)-(8) hold

Let G be any k × k orthogonal matrix. (GGT = GTG = I). Then,

x = Λ(GGT )f + e+ µ

= (ΛG)(GT f) + e+ µ

and GT f and e also satisfy (6)-(8).

So the k-factor model holds for new factors GT f , new loadings ΛG and the original unique
random factor e.

As required,

Σ = (ΛG)(ΛG)T +Ψ

Thus, for fixed Ψ (i.e. fixed e), the k-dimensional factor space is unique - but there are
infinitely many sets of orthogonal factor axes that span it. In this case we can resolve
the non-uniqueness by adding another constraint. We require that the loadings (i.e. the
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common factor axes) are rotated so as to satisfy, say

ΛTΨ−1Λ = diag(θi) (9)

where, θ1 > θ2 > . . . > θk > 0.

Theorem 3
If the k-factor model holds for x, then, given Ψ (i.e. e), the constraint (9) uniquely
determines the loading matrix Λ.

Proof: As Exercise.

[Outline: If ΛΛT = ∆∆T , and ΛTΨ−1Λ and ∆TΨ−1∆ are both diagonal matrices with
distinct non-zero elements written in decreasing order, then it is required to prove that the
k columns of Λ must be identical to the k columns of ∆, except possibly for a difference in
sign. Prove by considering the eigenvalues and eigenvectors of the matrix

Ψ− 1
2ΛΛTΨ− 1

2 = Ψ− 1
2∆∆TΨ− 1

2

and hence showing that the k columns of Ψ− 1
2Λ must be equal to the k corresponding

columns of Ψ− 1
2∆, except possibly for a difference in sign].

Note that constraint (9) is arbitrarily chosen and others are possible. It is easy to see (from
Theorem 2) that (9) is scale invariant.

5.2 Estimation of Λ and Ψ

Maximum Likelihood Factor Analysis

Suppose that we have a random sample x1,x2, . . . ,xn from the population with mean vector
µ and covariance matrix Σ. Recall that, under the assumption of multivariate normality,
the log-likelihood function is given by

ℓ(µ,Σ;X) = −np
2
ln2π − n

2
ln|Σ| − n

2
tr(Σ−1S)− n

2
(x− µ)TΣ−1(x− µ)

If we replace µ by its m.l.e. x we have

ℓ(x,Σ;X) = −n
2
[pln2π + ln|Σ|+ tr(Σ−1S)]
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If we assume that Σ = ΛΛT + Ψ, then ℓ is a function of Λ and Ψ, and m.l.e.’s of Λ and Ψ
are obtained by maximizing ℓ with respect to Λ and Ψ. Equivalently, we shall minimize the
following function.

F (Λ,Ψ) = ln|Σ|+ tr(Σ−1S)− ln|S| − p (∗)
where Σ = ΛΛT +Ψ.

Procedures to obtain parameter estimates Λ and Ψ for the k-factor model by minimizing (∗)
(subject to the constraint (9)) form the basis of algorithms for maximum likelihood factor
analysis which are available in many statistical packages (eg SAS and S-PLUS).

5.3 Goodness-of-fit

Factor Analysis proposes a model for the covariance structure of a set of variables. Assuming
multivariate normality, we can obtain from data maximum likelihood estimates of the
parameters in the model. It is natural then to use the generalised likelihood ratio to test
the adequacy of the k-factor model for explaining the observed covariances.

Suppose we have a random sample x1, . . . ,xn from MVN(µ,Σ). Then, the null hypothesis
is

H0 : Σ = ΛΛT +Ψ

where Λ is a p× k matrix and Ψ is a diagonal matrix with non-negative elements. We want
to test H0 against the alternative

H1 : Σ has no constraints

Under H0 the m.l.e.s are µ̂ = x and Σ̂ = Λ̂Λ̂T + Ψ̂ where Λ̂ and Ψ̂ are the mle’s of Λ and Ψ
which minimize (∗) above, subject to the constraint (9). Thus,

ℓ∗0 = ℓ(x, Σ̂,X)

= −1

2
n[p ln2π + ln|Σ̂|+ tr(Σ̂−1S)]

Under H1 the m.l.e.s are µ̂ = x and Σ̂ = S, and

ℓ∗1 = ℓ(x, S,X)

= −1

2
n[p ln2π + ln|S|+ p]
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The likelihood ratio statistic λ is defined as

λ =
L∗
0

L∗
1

Clearly 0 ≤ λ ≤ 1 and assymptotically −2lnλ has a χ2 distribution if H0 holds. That is

−2lnλ = 2(ℓ∗1 − ℓ∗0)

= ntr(Σ̂−1S) + nln|Σ̂| − nln|S| − np

= nF (Λ̂, Ψ̂)

(10)

Under H0 the statistic −2lnλ has an assymptotic χ2
r distribution where r is the difference be-

tween the number of free parameters inH1 (n1) and the number of free parameters inH0 (n0).

n1 =
1

2
p(p+ 1)

n0 = pk + p− 1

2
k(k − 1)

Then, it is easily verified that

r =
1

2
(p− k)2 − 1

2
(p+ k) (11)

In practice the n in (10) is replaced by n′ = n− 1− 1

6
(2p+ 5)− 2

3
k to improve convergence

to χ2
r. This is Bartlett’s improved χ2

r approximation. So to test H0, test

U = n′F (Λ̂, Ψ̂) ∼ χ2
r

This asymptotic approximation is good for n ≥ p+ 50.

5.4 Interpretation of Factor Analysis Output

Since Factor Analysis is scale-free, and maximum likelihood is a scale free estimation
procedure, it is the sample correlation matrix R that is generally analysed. From this it
follows that:

(a) Since diag(R)=I, the m.l. estimates Λ̂ and Ψ̂ satisfy
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k∑
j=1

λ̂2ij + ψ̂i = 1

or diag(Λ̂Λ̂T + Ψ̂) = diag(R), which implies the following relationship between the specific
variance ψ̂i and the communality ĥi.

ψ̂i = 1−
k∑

j=1

λ̂2ij = 1− ĥ2i (12)

(b) λ̂ij is an estimate of the correlation between xi and fj. That is,

x = Λf + e+ µ

⇒ Cov(x, f) = Cov(Λf + e+ µ, f) = Λ

and since, in the sample, x is scaled so that sii = 1, then Λ̂ estimates Corr(x, f).

Given Λ̂ (and hence Ψ̂ from (12)), what can we say about the model fitted?

We have:

Λ̂ =


λ̂11 λ̂12 . . . λ̂1k
λ̂21 λ̂22 . . . λ̂2k
...

λ̂p1 λ̂p2 . . . λ̂pk


∑k

j=1 λ̂
2
1j = ĥ21∑k

j=1 λ̂
2
2j = ĥ22

...∑k
j=1 λ̂

2
pj = ĥ2p

(i) The interpretation of a factor depends on the sizes of the λ̂’s in the corresponding

column of Λ̂. (All are comparable, estimated correlations). Interpretation is clearly
subjective, but crucial since it makes no sense to set up such an elaborate model to
explain the correlations if the factors are uninterpretable.

(ii) ĥ2i =
∑k

j=1 λ̂
2
ij, the sum of squared elements in row i of Λ̂, estimates the communality

of xi. This is the amount of the variance of xi accounted for by the dependence on
the k factors. The relative sizes of ĥ2i and ψ̂i = 1− ĥ2i are of interest.

(iii)
∑p

i=1 λ̂
2
ij is the sum of squared elements in column j of Λ̂. This is the amount of the

total variance (p) accounted for by factor j.
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(iv)
∑p

i=1

∑k
j=1 λ̂

2
ij =

∑p
i=1 ĥ

2
i is the amount of the total variance (p) accounted for by all

the factors.

(v)
∑k

l=1 λ̂ilλ̂jl estimates Corr(xi, xj). These correlations are what the model is attempting
to reproduce. It is of interest to see how close these estimates are to the observed rij,

the elements of R. It is usual to examine the elements of (R− Λ̂Λ̂T ). The off-diagonal
elements are the correlation residuals. The diagonal elements represent the estimated
unique variances.

Interpretation and Rotation of Factors

The constraint that ∆ = Λ̂T Ψ̂−1Λ̂ be diagonal is a mathematical convenience to make the
factor loadings unique. It results in an ordering of factors such that the first factor has
maximal contribution to the common variance of the observed variables, the second has
maximal contribution to this variance subject to being uncorrelated with the first, and so
on. Nevertheless it may not lead to the most easily interpretable factors.

Since the factors may be transformed using

x = (Λ̂G)(Λ̂f) + e+ µ

i.e.

Σ̂ = (Λ̂G)(Λ̂G)T + Ψ̂

where GTG = GGT = I, without affecting the validity of the model - we may choose an
orthogonal transformation matrix G so as to make the factors as ‘meaningful’ as possible.
Such transformations amount to an orthogonal rotation of the axes of the k-dimensional
factor space and are commonly called rotations of the loadings.
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What criteria should we use to find a ‘good’ rotation?

Consider the following example.

Λ̂
6×2

=

λ̂11 λ̂12
...

λ̂61 λ̂62



Initially;
f1 - all xi have high loadings,
f2 - 2 large +ve and 3 large −ve.

After rotation;
f∗1 - associated with 1, 2 and 5,
f∗2 - associated with 3 and 4,
and variable 6 has medium loadings on both
f∗1 and f∗2.

That is the rotation has made interpretation easier.

Possible criteria for a ‘good’ structure

Interpretation is most straightforward if the variables are split into disjoint sets, each
associated with a single factor. This aim is behind Thurstone’s ‘simple structure’, which
has the following properties. (For more detail see Everitt and Dunn, p278).

(1) Loadings should be either large and positive or near zero as far as possible. (A large
number of intermediate values complicates the interpretation).

(2) Each variable should be highly loaded on at most one factor.

(3) On each factor there should be a reasonable number of negligable loadings.

Such an ideal rotation rarely exists in practice.

Rotation can be done graphically but it is not considered wise to allow the rotation to be
chosen subjectively. There are a number of analytical methods of rotation. We consider just
one.
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Varimax Rotation

It is required to choose Γ = (γij) = ΛG according to some kind of mathematical criterion.

The varimax criterion maximizes the function ϕ, where ϕ is the sum of the variances of the
squared elements within each column of the loading matrix Λ = (λij), after each row i has
been normalized by hi, the square root of its communality. i.e.

ϕ =
k∑

j=1

p∑
i=1

(d2ij − dj)
2 =

k∑
j=1

p∑
i=1

d4ij − p
k∑

j=1

d
2

j

where dij = γij/hi and dj =
1
p

∑p
i=1 d

2
ij.

ϕ is a function of G and can be maximized numerically with respect to G.

5.5 Factor Scores

So far we have been concerned with the way the observed variables are functions of the
unknown factors.

e.g. In Spearman’s exam data the factor model is

xi = λi1f1 + ei + µi

and describes how a child’s test scores depend on his/her overall ‘intelligence’.

Conversely, we could ask: Given a child’s set of test scores, what can we say about his or
her ‘score’ on the overall intelligence factor?

In general it may be required to find the values or scores of each individual on the derived
factors.

In PCA each component, by definition, is a linear combination of the original variables. For
the factor model things are not so simple. There is no obvious way of inverting the model
to obtain the fj in terms of the xi, and the problem of finding the factor scores (from a fully
specified factor model) has to be regarded as a problem of estimation.

There are a number of commonly used methods of estimation, but these will not be considered
here. [See, for example, Mardia, Kent and Bibby].
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5.6 PCA and FA

There are obviously many similarities between principal components analysis and factor
analysis, but there are some important differences also. We summarise a few points.

1. Both are ways of factorising a covariance matrix.

PCA: S = ΓΓT
FA: S ≈ Λ̂Λ̂

T
+ Ψ̂

2. PCA: method for accounting for variances.
FA: method for explaining covariances.

Both are pointless if all the observed variables are approximately uncorrelated.

3. PCA: factorisation is unique for a particular scaling of variables.
FA: factorisation is only unique up to a rotation of the factor axes.

Note: some people rotate Principal components - but this leads to a loss properties of
maximum variance etc.

4. PCA: not scale invariant.
FA: model scale invariant. MLFA estimates scale invariant.

5. PCA: just an orthogonal rotation of variable axes - no assumptions required and no
tests possible if none are made.
FA: based on a ‘proper’ statistical model. This implies that many more assumptions
are required, but for MLFA test of goodness-of-fit is possible. However in most
practical applications k, the number of factors is unknown and the researcher resorts
to trying k = 1, k = 2, k = 3, etc. until the model ‘fits’. It should be noted that
the χ2 statistics obtained in this fashion are not independent and the true signif-
icance level of the test may be very different from the nominal value used at each stage.

6. PCA: The number of components worth retaining may be varied without the compo-
nents retained altering in any way.
FA: Increasing the number of factors from k to k + 1 gives a completely new matrix
of loadings which may look quite different from the k-factor matrix of loadings.

Finally, see the extract from Chatfield and Collins in the Examples handout discussing the
drawbacks of FA. Theirs is an extreme view but should serve as a warning against the
unthinking use of FA - or indeed PCA.
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