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This project involes determining the dynamics of the double pendulum with a sliding 

base (see figure above). Each link is assumed to be of square cross section. 

 

The objective is to determine the angles θθθθ1 and θθθθ2 over the time period of t = 0 s to t = 4 s. 

Let the base motion be prescribed as )4.4sin(
8

1
)( ttx = . Based on the Newton’s second 

law, the equations of motion (for the angular acceleration of each link) are given by 
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where m and l are the mass and length of the links and 
12

2ml
I c ====  is the moment of 

inertia of each link. Important note: the ‘dot’ notation over the symbol means the 

corresponding derivative with respect to time. 

 

The values of various parameters to be used in the calculations are: 
 

g = 9.81 m/s
2
; l = 0.50 m;  ρ = 6500 kg/m

3 
(link density); b = 0.10 m (dimension of 

square link cross-section); m = l*(b*b)*ρ kg; Ic = m*l*l/12.0 m
3
. 

 

The above is a system of two 2
nd

 order ordinary differential equations (ODEs). In order to 

be able to solve this, first transform them into an equivalent four 1
st
 order ODEs. This can 

be accomplished as follows: Inverting or solving the system of equations above (using 

the backslash operator or other techniques in MATLAB) and using the fact 

that
•

= 11 / θθ dtd , 
•••

= 11/ θθ dtd (and similarly for 2θ ) will provide the values needed to 

complete the right hand side of the following representation of the system of four 1
st
 

order ODEs 
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Assume that the initial conditions are given by 
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Write a MATLAB program that solves for y
r

  over the interval t = 0 s to t = 4 s using 

three different methods:  the Euler method, the mid-point method (2
nd

 Order Runge-

Kutta), and the classical 4
th

 Order Runge-Kutta method. 

 

To evaluate the effect of your step size (h) on the results for each of the three methods, 

use the following six values of h (units of seconds): 0.02, 0.01, 0.005, 0.0025, 0.00125, 

and 0.000625. For step sizes 0.01s and smaller, calculate the approximate percent relative 

error in θθθθ1 at t = 4 s between the current step size and the next largest step size. 

 

For example, for a step size of 0.01, the approximate percent relative error is: 
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Turn in a report that contains the following: 

 

1. Title page, including the title of the project and your name 

2. Introduction and objectives section: 

• Summarize the problem and state the goals, including what you are trying 

to find, the ranges of values of t and h to be used, etc. 

3. Program design section 

• Describe the overall structure of your program 

• If you used any portions of code from another source (for example, a 

textbook), cite the source and describe any modifications you made to the 

code. 

• Describe how you solved for 1θθθθ&&  and 2θθθθ&&  in the system of equations 

(backslash operator, inv(A), or others) 

• Describe how you solved for y
r

using the specified values of h 

 

4. Plots. Your report must contain the following five figures with titles, properly 

labeled axes, and legends where appropriate: 

• Figure 1: On a single graph, plot the approximate percent relative error in 

θ1 at t = 4 s vs. step size h for the three different methods. 

• Figure 2: θθθθ1 vs. t using the largest value of h (0.02 s) 

• Figure 3: θθθθ2 vs. t using the largest value of h (0.02 s) 

• Figure 4: θθθθ1 vs. t using the smallest value of h (0.000625 s) 

• Figure 5: θθθθ2 vs. t using the smallest value of h (0.000625 s) 

 

5. Discussion and Conclusions 

• Based on Figure 1, what can you learn about the effects of h on the results 

obtained with the three different methods? 

• What can you learn by comparing Figure 2 to Figure 4? 

• What can you learn by comparing Figure 3 to Figure 5? 

• If you had to design this system, which differential equation solution 

method would you use and why? 

 

6. A printout of your code 

 

 

 


