Project \#2

MECH 3010: Elementary Numerical Methods and Programming
 Fall 2016

Assigned: 11/16/16
Due: 12/05/16

This project involes determining the dynamics of the double pendulum with a sliding base (see figure above). Each link is assumed to be of square cross section.

The objective is to determine the angles $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{\mathbf{2}}$ over the time period of $\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=4 \mathrm{~s}$. Let the base motion be prescribed as $x(t)=\frac{1}{8} \sin (4.4 t)$. Based on the Newton's second law, the equations of motion (for the angular acceleration of each link) are given by
$\left[\begin{array}{cc}\left(I_{c}+\frac{5}{4} m l^{2}\right) & \frac{1}{2} m l^{2} \cos \left(\theta_{1}-\theta_{2}\right) \\ \frac{1}{2} m l^{2} \cos \left(\theta_{1}-\theta_{2}\right) & \left(I_{c}+\frac{1}{4} m l^{2}\right)\end{array}\right]\left\{\begin{array}{l}\ddot{\theta}_{l} \\ \ddot{\theta}_{2}\end{array}\right\}=-\left\{\begin{array}{l}\frac{3}{2} m l \ddot{x} \cos \left(\theta_{1}\right)+\frac{1}{2} m l^{2} \sin \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{2}^{2}+\frac{3}{2} m g l \sin \left(\theta_{1}\right) \\ \frac{1}{2} m l \ddot{x} \cos \left(\theta_{2}\right)-\frac{1}{2} m l^{2} \sin \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1}^{2}+\frac{1}{2} m g l \sin \left(\theta_{2}\right)\end{array}\right\}$
where \boldsymbol{m} and \boldsymbol{l} are the mass and length of the links and $\boldsymbol{I}_{\boldsymbol{c}}=\frac{\boldsymbol{m} \boldsymbol{l}^{2}}{\mathbf{1 2}}$ is the moment of inertia of each link. Important note: the 'dot' notation over the symbol means the corresponding derivative with respect to time.

The values of various parameters to be used in the calculations are:
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2} ; 1=0.50 \mathrm{~m} ; \rho=6500 \mathrm{~kg} / \mathrm{m}^{3}$ (link density) $\mathrm{b}=0.10 \mathrm{~m}$ (dimension of square link cross-section); $m=l^{*}\left(b^{*} b\right)^{*} \rho \mathrm{~kg} ; \mathrm{I}_{\mathrm{c}}=\mathrm{m}^{*} \mathrm{l}^{*} 1 / 12.0 \mathrm{~m}^{3}$.

The above is a system of two $2^{\text {nd }}$ order ordinary differential equations (ODEs). In order to be able to solve this, first transform them into an equivalent four $1^{\text {st }}$ order ODEs. This can be accomplished as follows: Inverting or solving the system of equations above (using the backslash operator or other techniques in MATLAB) and using the fact that $d \theta_{1} / d t=\dot{\theta}_{1}, d \dot{\theta}_{1} / d t=\ddot{\theta}_{1}$ (and similarly for θ_{2}) will provide the values needed to complete the right hand side of the following representation of the system of four $1^{\text {st }}$ order ODEs

$$
\dot{\vec{y}}=\vec{f}(t, \vec{y})
$$

where

$$
\dot{\vec{y}}=\left\{\begin{array}{c}
\dot{\theta}_{1} \\
\ddot{\theta}_{1} \\
\dot{\theta}_{2} \\
\ddot{\theta}_{2}
\end{array}\right\} \quad \text { and } \quad \vec{y}=\left\{\begin{array}{c}
\theta_{1} \\
\dot{\theta}_{1} \\
\theta_{2} \\
\dot{\theta}_{2}
\end{array}\right\}
$$

Assume that the initial conditions are given by

$$
\vec{y}_{0}=\left\{\begin{array}{l}
\theta_{1}(0) \\
\dot{\theta}_{1}(0) \\
\theta_{2}(0) \\
\dot{\theta}_{2}(0)
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

Write a MATLAB program that solves for $\overrightarrow{\boldsymbol{y}}$ over the interval $\mathrm{t}=0 \mathrm{~s}$ to $\mathrm{t}=4 \mathrm{~s}$ using three different methods: the Euler method, the mid-point method ($2^{\text {nd }}$ Order RungeKutta), and the classical $4^{\text {th }}$ Order Runge-Kutta method.

To evaluate the effect of your step size (h) on the results for each of the three methods, use the following six values of h (units of seconds): $0.02,0.01,0.005,0.0025,0.00125$, and 0.000625 . For step sizes 0.01 s and smaller, calculate the approximate percent relative error in $\boldsymbol{\theta}_{\mathbf{1}}$ at $\mathrm{t}=4 \mathrm{~s}$ between the current step size and the next largest step size.

For example, for a step size of 0.01 , the approximate percent relative error is:
$\mathcal{E}_{a}(0.01)=\left|\frac{\left(\theta_{1}(t=4 s) \text { using } \mathrm{h}=0.01\right)-\left(\theta_{1}(t=4 s) \text { using } \mathrm{h}=0.02\right)}{\theta_{1}(t=4 s) \text { using } \mathrm{h}=0.01}\right| * 100 \%$

Turn in a report that contains the following:

1. Title page, including the title of the project and your name
2. Introduction and objectives section:

- Summarize the problem and state the goals, including what you are trying to find, the ranges of values of t and h to be used, etc.

3. Program design section

- Describe the overall structure of your program
- If you used any portions of code from another source (for example, a textbook), cite the source and describe any modifications you made to the code.
- Describe how you solved for $\ddot{\boldsymbol{\theta}}_{1}$ and $\ddot{\boldsymbol{\theta}}_{2}$ in the system of equations (backslash operator, $\operatorname{inv}(\mathrm{A})$, or others)
- Describe how you solved for $\overrightarrow{\boldsymbol{y}}$ using the specified values of h

4. Plots. Your report must contain the following five figures with titles, properly labeled axes, and legends where appropriate:

- Figure 1: On a single graph, plot the approximate percent relative error in θ_{1} at $\mathrm{t}=4 \mathrm{~s}$ vs. step size h for the three different methods.
- Figure 2: $\boldsymbol{\theta}_{\mathbf{1}}$ vs. t using the largest value of $\mathrm{h}(0.02 \mathrm{~s})$
- Figure 3: $\boldsymbol{\theta}_{\mathbf{2}}$ vs. t using the largest value of $\mathrm{h}(0.02 \mathrm{~s})$
- Figure 4: $\boldsymbol{\theta}_{1}$ vs. t using the smallest value of $\mathrm{h}(0.000625 \mathrm{~s})$
- Figure 5: $\boldsymbol{\theta}_{2}$ vs. t using the smallest value of $\mathrm{h}(0.000625 \mathrm{~s})$

5. Discussion and Conclusions

- Based on Figure 1, what can you learn about the effects of h on the results obtained with the three different methods?
- What can you learn by comparing Figure 2 to Figure 4?
- What can you learn by comparing Figure 3 to Figure 5?
- If you had to design this system, which differential equation solution method would you use and why?

6. A printout of your code
