
 1

University of Wollongong

School of Computing and Information Systems

CSCI251/851 Advanced Programming Autumn 2017

Assignment 3 (Due: Week 8, Wednesday 17 April) 8 marks

Aim:
This assignment is to familiarise you with the use of container classes in your programs.

On completion you should know how to:

• Write container class objects with overloaded operators.

• Implement programs incrementally to minimise debugging.

• Custom design container class objects for software applications.

Requirements:
Complete the following class object by writing the code needed in the provided files. Much of this

is explained in the week-4 lecture notes “4b C++ Classes - book.pdf”. After completing each step,

test that your code works by writing appropriate code in main.cpp.

Step 1 - 4 marks

Implement all public member functions of the linked list class declared below in files list.h and

list.cpp. Note: RemoveHead() returns true if an item is successfully removed from the list or false

if unsuccessful (i.e. the list is empty). Also, implement the main() function given below in

main.cpp. Modify the main() function by inserting code for testing all the list's member functions.

Your main() should print on the screen the test being performed and produce output showing that

the test case works. (e.g. “Testing AddTail()”, Testing RemoveHead()”, “Testing destructor”)

struct Node

{
 int Item;

 Node *Next;

};

class LinkedList

{
 public:

 LinkedList();

 ~LinkedList();

 void AddTail(int Item); // adds item to tail

 bool RemoveHead(int &Item);// removes item from head

 void Print(); // prints list. eg 12 34 21 26

 private:
 Node *Head;

};

int main()

{

 LinkedList L1 . . .

 // Put your code for testing your list functions here

 return 0;

}

 2

Step 2 (2 marks)

Also implement AddHead() and RemoveTail() public member functions. AddHead() adds an item

to the head of the list. RemoveTail() removes an item from the tail of the list and returs true if

successful, or false if the list is empty. Modify the main() function by adding code for testing these

functions. Make sure you print on the screen the test being performed and produce output that

shows that the tests worked.

Step 3 (1 mark)

In your linked list class, also implement a copy constructor that makes a deep copy of the list

argument. Add code for testing the copy constructor on empty and non-empty lists. Make sure you

print on the screen the test being performed and produce output that shows that the tests worked.

Step 4 (1 mark)

Implement an assignment operator in your LinkedList class. The assignment operator should

ensure multiple assignments are possible. eg the following statements should make A and B

identical to C.

 List A, B, C;

 for(int i=0; i<10; i++)

 C.AddHead(i);

 A = B = C;

Ensure there are no memory leaks and all lists have their own separate memory. You should not

assume the left-hand operand is always empty. Add code in the main for testing the assignment

operator on both empty and non-empty lists.

Step 5 (for CSCI851 students. 1 mark deduction if not done.)

Implement the addition operator (+) in your LinkedList class. Your assignment operator should

enable a concatenated list to be assigned to another list. E.g.

LinkedList L1,L2,L3;

... // code for adding data to lists

L3 = L1 + L2; // makes L3 a concatenated list of L1 and L2

Add code to the main() for testing the plus operator on both empty and non-empty lists.

Submit:

Submit your files using the submit facility on UNIX as shown below:

$ submit -u login -c CSCI251 –a3 main.cpp list.h list.cpp output.txt

where 'login' is your UNIX login ID

Note: CSCI851 should also submit to –c CSCI251.

You must demonstrate your program in the lab on week 9. Failure to demo on time will result in a

1 mark deduction for each week late.

Deductions will be made for untidy work or for failing to comply with the submission instructions.

Requests for alternative submission arrangements will only be considered before the due date. An

extension of time for the assignment submission may be granted in certain circumstances. Any request for

an extension of the submission deadline must be made to the Subject Coordinator before the submission

deadline. Supporting documentation must accompany the request for any extension. Late assignment

submissions without granted extension will be marked but the marks awarded will be reduced by 1 mark

for each day late. Assignments will not be accepted if more than three days late.

