<u>HA # 5</u>

In this assignment, you will design and test three matching networks:

- **a)** A Quarter-wave transformer
- **b)** A 4-section Binomial transformer
- c) A 4-section Chebychev transformer

Assignment Scope

In this design, you will attempt to match a real load of $R_L = 20\Omega$ to a transmission line with a 50 Ω characteristic impedance at a frequency of 6.0 GHz.

The **bandwidth** of the 4-section transformers is defined by $\Gamma_m = 0.1.1$. Assume TEM wave propagation in the transmission lines, and the transmission line dielectric constant is $\varepsilon_r = 9.0$.

Assignment Tasks

- 1) Design each of the three matching networks, determining both the characteristic impedance and physical length (in cm) of each section.
- 2) Use the design equations in your notes/book to **determine** the **expected bandwidth** for each design.
- 3) Implement each design on ADS software. Analyze the circuit by evaluating $\Gamma_{in}(\omega)$ from 0 to 12 GHz. Display the results as (make sure you use enough frequency points—at least 100—in the analysis!):
 - a. Smith Chart plot of $\Gamma_{in}(\omega)$. Note this is a **parametric** plot of reflection coefficient in Γ as a function of **frequency**—not as a function position (i.e., **not** $\Gamma(z)$!).
 - b. Cartesian plot of $\Gamma_{in}(\omega)$ (i.e., **linear** scale) versus frequency, with a vertical scale from 0 to 1.0.

Q1: Do the plots indicate that your designs are correct? **Explain why** you think so. **Give** specific **numerical** examples!

Q2: Observe the parametric plot $\Gamma_{in}(\omega)$ on the Smith Chart. Use the adjustable markers to **determine** at what **frequencies** the curve is **far** from the center of the chart, and at what **frequencies** the curve is **near** the center. Use your knowledge of the Smith Chart and matching networks to **explain why** this result makes sense.

Q3: Likewise **precisely determine** the **specific frequencies** at which the parametric Smith Chart plot of $\Gamma_{in}(\omega)$ is **precisely** at the center of the chart (i.e., the curve intersects the center point). **Explain why** this result makes sense. **Locate** these **same** specific frequencies

on the **Cartesian** plot. What is the values of $\Gamma_{in}(\omega)$ at these frequencies? Explain why this result makes sense.

4) Use the adjustable markers on the plots to determine the bandwidth of each design, using the criterion $\Gamma_m = 0.1$.

Q4: You will find that the bandwidths of your design will not be exactly the bandwidths predicted by the design equations. Explain why that is. Hint: It is not because "ADS has errors"!

5) You will find that at f = 6 GHz , the following device has an input impedance of approximately $Z_{in} \approx 20 + j0 \Omega$ if the length l is properly determined:

- 6) Determine the proper value for line length l. Now replace the 20 Ω resistor with this 20 Ω "load" shown above, and reanalyze (with ADS) each matching transformer design.
- 7) **Display** the results of this new load on the same two plots (with the same scale!) as described in step 3.

Q5: Compare and contrast these results with the 20 Ohm resistor plots. How are the results different? Determine the specific frequencies where the value of $\Gamma_{in}(\omega)$ is precisely the same for the two cases. Explain why this is true.