
PROGRAMMING LANGUAGES

1

The Ideal HPC Programming Language

Maybe it’s Fortran. Or maybe it just doesn’t matter.

Eugene Loh, Oracle

The DARPA HPCS (High Productivity Computing Systems) program sought a tenfold productivity 
improvement in trans-petaflop systems for HPC (high-performance computing). This article 
describes programmability studies undertaken by Sun Microsystems in its HPCS participation. 
These studies were distinct from Sun’s ongoing development of a new HPC programming language 
(Fortress) and the company’s broader HPCS productivity studies, though there was certainly overlap 
with both activities. 

These programmability studies started with a focus on programming languages, but the focus 
quickly shifted to other topics. Existing languages—notably Fortran, which is arguably still the 
primary language in HPC—proved remarkably adequate. Programming challenges stem mostly from 
other factors. 
 
BACKGROUND 
What if programming did not mean having to learn a language someone else devised and then 
wrestling with the limitations of that language, its compilers, and computers to implement your 
task? What if it meant, in a sense, the opposite? You could write your program in whatever way was 
most expressive for you, without regard for language rules imposed by someone else. Then it would 
be somebody else’s job to define the programming language that would make sense of what you 
wrote, write the compilers to digest the program, and build the computers that would efficiently run 
the task you specified. 

We undertook such an exercise to get a feel for what an “ideal” programming language for HPC 
applications might look like. Our approach was to take existing HPC programs and have someone 
rewrite them in whatever way suited that individual, not bound by the constraints of any existing 
computer, compiler, or language. Rather, he was invited to write whatever seemed most expressive. 
We might not be able to compile or run these programs, but we could at least see what the writer 
wanted. 

Almost immediately, we were struck by what we were seeing. Of course, the rewritten code was 
much more compact and readable than the original, but, surprisingly, the “ideal” programming 
language was basically Fortran. 

My first job here is to convince you that this finding is not ridiculous. I admit, the experiment 
was biased in that we were starting with existing code, mostly written in Fortran, and used a human 
subject who was not only familiar with Fortran but indeed embraced it. The main point, however, 
is less that every programmer would have ended up preferring Fortran and more that the problems 
with the original source code have more to do with reasons other than the limitations of existing 
programming languages. We look at some of these reasons here. 

The DARPA HPCS program also sponsored the development of new programming languages: 
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Chapel from Cray, Fortress from Sun, and X10 from IBM. Proponents of those languages would show 
early on how rewriting familiar HPC benchmarks in the new languages could reduce source-code 
volume substantially—tenfold reductions were not surprising—but rewriting these benchmarks even 
in Fortran achieved similar source-code reductions and corresponding improvements in expressivity. 

New programming languages still have much to offer, for example, in the areas of expressing 
concurrency and especially data distribution. It’s just that the bloat we see in current HPC source 
code stems not so much from inadequacies in current languages as from other factors. 

WHAT WE DID 
We rewrote a number of HPC benchmarks and applications using modern Fortran in a way that 
took into account the human costs of software development: programmability and associated 
characteristics such as readability, verifiability, and maintainability. These are important 
considerations; although copy-and-paste is a fast way of writing lines of code, it degrades readability 
and increases maintenance costs. 

Part of this effort included working with the Sun HPCS productivity group to quantify 
programmer productivity in general and to study human subjects in our rewriting exercises in 
particular. A human subject’s activities could be observed passively with the Hackystat telemetry 
tool or actively via interviews or having the subject keep a journal. The team included a cultural 
anthropologist who guided these observations. 

In this article we focus on the output of the rewriting activity, examining the rewritten HPC 
programs and causes of source-code bloat. The particular HPC test codes used here are the NPBs 
(NAS Parallel Benchmarks) CG, MG, and BT; the plasma fusion application GTC; and the 3D 
hydrodynamics code sPPM. 

A key metric was the number of SLOC (source lines of code). This is admittedly a crude and 
often deceptive metric, but it served as a convenient starting point for quantifying readability and 
expressivity of source code. 

Since the generated computer programs were in Fortran, they could be compiled and run. 
Thus, we were able to study their performance relative to the original code, test automatic 
parallelization with currently available tools, and speculate on the potential for improvements in 
autoparallelization. 

Table 1 lists SLOC and performance comparisons between original and rewritten versions of some 
of the HPC codes we studied:

TABLE 1. HPC Code Comparisons
Lines of Code

Code Name Before After Reduction Performance Slow Down
NPB CG 839 81 10x 1x
NPB MG 1701 150 11x 2x-6x
NPB BT 4234 594 7x 2.7x
GTC 6736 1889 3.6x 2.7x
sPPM 13606 1358 10x 2x
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AUTHOR FEEDBACK 
We saw remarkably large reductions in source-code volume. The smallest reduction was in GTC, 
which already used relatively modern Fortran constructs, had relatively little MPI (Message Passing 
Interface) parallelism (distributed memory), and had computation and I/O formatting that the 
human subject was uncomfortable modifying. 

We saw various indications that the rewritten programs not only had fewer lines of code, but also 
were easier to read, verify, and modify. It was not simply our judgment, however, that concluded 
that expressivity could be improved tremendously. In the case of GTC, we solicited feedback on the 
rewritten program from one of the application’s maintainers. Here are selected comments:  

At first glance, I was impressed by how small and compact the code had become. I 
always thought that GTC was as small as it could get, but I was obviously wrong. I 
was also pleasantly surprised to discover that the programming language was still 
standard Fortran 90/95, and not a totally new language. 

The new code is clear, concise, and easy to read. 

The fact that all the MPI calls and OpenMP directives have been removed makes the 
physics represented in the code easier to follow. 

[The rewrite introduced elegant] code reuse in CHARGE and PUSH.

But there was this warning: 
[Expect a] performance hit unless the compiler can perform very good 
interprocedural optimization and/or automatic inlining.

This warning arose because there were many transformations from continuous (ζ,r,θ) coordinates 
to discretized mesh indices. The readability and maintainability of the source code benefited 
greatly from encapsulating these many transformations into a few functions, but the performance 
suffered from the extra procedure calls and loss of many specializations and optimizations of the 
transformations. 

SINGLE-CPU PERFORMANCE 
Much of HPC is performance, including parallelization. The code we examined showed many 
familiar HPC characteristics: loop unrolling, vectorization, cache blocking, multithreading, data 
distribution, and so on. One might argue that, while it may be possible to reduce code volume 
dramatically, the cost in overall performance would be intolerable. 

We were pleasantly surprised that single-CPU performance degradation wasn’t too bad in general. 
Indeed, for NPB CG, most of the work is performed by low-level sparse-matrix routines, and overall 
performance really didn’t change at all. We expect similar results whenever the computationally 
intensive kernels—sparse-matrix routines, dense matrix multiplies, FFTs (fast Fourier transforms), 
etc.—are performed in library or other well-tuned kernels. 

In other cases we saw slowdowns but expected to recover much of the performance with judicious, 
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tactical (few-line) optimizations. For example, the rewrite of the NPB MG code saw a 2x speedup by 
converting stencil operations from array syntax to (arguably more readable) DO loops. In GTC, one 
section of code ran four times faster when the Fortran MODULO intrinsic was replaced by a suitable 
substitute. Such optimizations, of course, place one on a slippery slope. Code bloat creeps back in, 
and maintainability of the code degrades. Indeed, even performance can suffer. We have seen cases 
where simplifying the source code by removing “optimizations” actually improved performance, 
presumably because the “optimizations” originated on sufficiently different hardware or targeted 
sufficiently different compilers. 

Meanwhile, the battle to deliver good performance on expressive HPC source code must still be 
waged. Compiler optimizations must be augmented with ongoing hardware improvements. There 
is much work to be done on latency-hiding techniques such as prefetch, chip multithreading, and 
scout threads. To some extent, this simply moves the pressure from memory latency to memory 
bandwidth; thus, some system designers tackle other problems, such as efficient use of partial cache 
lines.
 
PARALLELIZATION 
HPC parallelization often falls into two categories: finding concurrency and distributing data. 
Finding concurrency is much simpler than distributing data. Our guarded optimism regarding 
existing languages extends even to parallelization if, by that, we mean finding concurrency. If data 
distribution is needed to achieve high-end performance, however, new programming languages or 
constructs seem that much more crucial. 

HPC seldom uses locks. More typically, concurrency is related to data-parallel loops—for example, 
time stepping all particles or grid elements concurrently. Meanwhile, clusters of commodity 
computers have become the price-performance winners in HPC. Therefore, parallelization also 
involves the decomposition of data over cluster nodes. Nodes share data in HPC typically through 
explicit message passing, for example with MPI. 

Consider the ADI (alternating direction implicit) method for solving partial differential 
equations. Specifically, consider a 3D rectangular grid, such as that shown in figure 1. Physically, the 
information on any grid cell propagates throughout the 3D volume, ultimately influencing all other 
cells. Computationally, we can restrict data propagation to be along only the X axis in one phase of 
computation, later along the Y axis, and finally along the Z axis. Ultimately, the computed physics 
should remain unchanged. 

Such an algorithm organizes computation along “pencils” of cells. For example, in the first 
phase, all cells in an X-aligned pencil can be updated based solely on data values within this pencil. 
Indeed, all X-aligned pencils can be updated concurrently; then all Y-aligned pencils; and finally, 
all Z-aligned pencils. If there are N3 elements in the grid, then there are N2 pencils in each of the 
X, Y, or Z phases. That is to say, there is considerable concurrency. The BT and sPPM codes are both 
organized like this, as are multidimensional FFTs.
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The pseudocode might look like this: 

 INTEGER NX, NY, NZ, X, Y, Z
 DIMENSION MYDATA(NX,NY,NZ)
 FORALL ( X = 1:NX, Y = 1:NY ) CALL UPDATE(MYDATA(X,Y,:))
 FORALL ( X = 1:NX, Z = 1:NZ ) CALL UPDATE(MYDATA(X,:,Z))
 FORALL ( Y = 1:NY, Z = 1:NZ ) CALL UPDATE(MYDATA(:,Y,Z))

Each subroutine call can be made concurrently with all other calls in the same FORALL statement. 
There is, however, no way of distributing the elements of MYDATA onto multiple processors so that 
each processor has all the data it needs for all stages of computation. If a particular processor “owns” 
MYDATA(X,Y,Z), then to process an X-aligned pencil of data it needs all MYDATA(:,Y,Z) values. Then, 
to process Y-aligned pencils of data, it needs all MYDATA(:,:,Z) values. Finally, to process Z-aligned 
pencils of data, it needs all MYDATA(:,:,:) values. 

Therefore, while concurrency in this example is rife, distributed-memory systems face a great 
challenge both in exchanging data between processors explicitly and in distributing data so that 
such costly exchanges are minimized. 

Similar issues arise even in shared-memory systems. It may be possible for all processors to access 
all elements in place, but these accesses must be coordinated, whether to prevent race conditions 
or to deal with cache coherency. Even shared-memory systems benefit from spatial locality since 
processors can then deal with complete cache lines. 

If we focus on the relatively easier problem of concurrency, we could in the long term help keep 
the HPC programmer from having to parallelize explicitly. We would benefit from improvements 
in software. Existing compilers already identify some opportunities for automatic parallelization. 
This includes progress on autoscoping—that is, automatically analyzing source code to determine 
the usage (private, shared, read-only shared, replicated, etc.) of variables so that a loop could be 
parallelized. Automatic analysis would be aided by whole-program or interprocedural analysis. 

Runtime management of concurrency would also help. Loops might be nested, or loop iterations 
might be unbalanced. Loop counts and processor counts might not be known until runtime. Static 
analysis alone cannot balance computational loads or judge the balance between fine-grained 
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parallelism (for maximum concurrency) and coarse-grained parallelism (to amortize the costs of 
parallelization). 

Simpler concurrency for the HPC programmer would also benefit from hardware improvements. 
Large, globally addressable memories help. Processors run faster with cached data, however, 
so coherency must be managed. Hardware can support concurrency with atomic operations, 
transactional memory, and active messages. 

While concurrency seems relatively simpler, managing data distribution seems a much more 
difficult task. This is one area where new programming languages could really offer help. 

For example, the NPB BT benchmark has a cousin, BT I/O, which adds I/O to the test. This offers 
a test of adaptive maintenance—that is, adding functionality to an already written program. The 
comparison was almost a joke: setting up I/O in the original, distributed-memory version of the code 
added 144 source lines, while the rewritten, shared-memory version needed only one extra line! 

ALGORITHMIC COMPLEXITY 
Performance and parallelization are not the only pressures causing large source code. Another issue 
is that the ideas the computational scientist wants to express are rather low level. For example, the 
fusion code GTC models the Lorenz force, which a physicist could succinctly write as 

F = q(E + v X B)

but which the computational physicist transforms into many pages of bewildering equations 
and commensurately large volumes of computer code. Since charged particles travel in very 
tight spirals in plasmas, the computational physicist starts by transforming to a “guiding-center” 
formulation. Then coordinates are transformed to align with the magnetic fields in a tokamak. Such 
transformations introduce considerable complexity, but they also improve the numerical properties 
and performance of the code by several orders of magnitude, an advantage that cannot be overcome 
just by buying more computer equipment. 

Generally, computational scientists remove high-frequency components, discretize grids, use 
sophisticated time stepping, introduce crucial approximations, expand terms, transform coordinates, 
add dissipative terms and upwind differencing to control numerical stability, and otherwise turn 
a few simple equations into pages of mind-numbing algorithms that represent the essence of 
what they’re trying to do computationally. To forgo that algorithmic complexity would increase 
computational cost by many unaffordable orders of magnitude. A computational scientist’s bread 
and butter is not simply the equations of mathematical physics (the Lorenz force, Schrödinger’s 
equation, Navier-Stokes equations, etc.) but algorithmic specifications that make computation 
possible within a particular set of conditions. Fortran is rather good at expressing computational 
rules. Modern Fortran with array syntax, generic interfaces, optional arguments, recursive 
subroutines, MODULEs, array-valued functions, and other features, is even more so. The ability to 
have typeset mathematical syntax, as with Fortress or Mathematica, would also be nice. 

Other areas that seem to have complexity that would be hard to express regardless of the 
programming language include high-level algorithmic control flow and detailed I/O formatting. 
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IMPLEMENTING BAND-AIDS 
Source-code volume also expands as a result of limitations—even defects—in current software and 
hardware. One example is portability. HPC programmers must account for different vendors, MPI 
implementations, threading models, compilers, Fortran-C interoperability conventions, default word 
sizes, etc. In other cases, code takes pains to reproduce particular floating-point numerics (regardless 
of whether those numerics are right). Inconsistent library availability, whether a result of licensing or 
installation and bundling issues, also is an issue: while libraries offer all sorts of functionality, HPC 
code often has its own random-number generators, matrix multipliers, sparse-matrix support, linear 
solvers, and FFTs to ensure that these capabilities will be available regardless of where the application 
is run. 

HPC code sometimes also implements capabilities that might be better provided by tools. 
Examples include performance instrumentation, debugging code, and checkpointing. 

Source code also reflects workarounds to transient bugs or to limitations in compilers. An example 
is Fortran array syntax. We have found many instances where array syntax allows much higher-
level programming. Many programmers, however, have avoided the elegant syntax because its 
implementation in many compilers is immature. Arguably, developing new programming languages 
would exacerbate rather than solve such a problem.

Despite our rosy view of existing programming languages, we admit encountering areas where 
language improvements would have been nice. Type inference, including the inference of array 
extents, would allow one to forgo tedious boilerplate declarations. Better support of stencils 
(computations on grids where each element is updated based on nearby elements) is useful for HPC. 

SPECIFICATION, VERIFICATION, AND VALIDATION 
We started with the software development model in which a computer program starts from a written 
specification. Then, it must be verified (checked against the spec) and validated (checked that it 
fulfills its intended purpose over some range of parameters). 

It is possible that the program is written without verifiability in mind. Here is a striking example 
from the NPB BT code: 

 rhs(2,i,j,k) = rhs(2,i,j,k) + dx2tx1 *
 (u(2,i+1,j,k) - 2.0d0*u(2,i,j,k) +
  u(2,i-1,j,k)) +
 xxcon2*con43 * (up1 - 2.0d0*uijk + um1) -
 tx2 * (u(2,i+1,j,k)*up1 -
 u(2,i-1,j,k)*um1 +
 (u(5,i+1,j,k)- square(i+1,j,k)-
 u(5,i-1,j,k)+ square(i-1,j,k))*
 c2)

This code is basically supposed to implement the following from the NPB1 specification: 
[RHS2] = ...  
  - ( ∂ / ∂ξ ) ( [u(2)]2/u(1) + φ )  
  + ( ∂2 / ∂ξ2 ) ( d

ξ
(2)u(2) + (4/3)k3k4[u

(2)/u(1)] ) 
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There is little correspondence between the source code and the specification it is supposed to 
implement. This is not so much a limitation of the programming language but of human intention. 
Here is how we rewrote the code, with the purpose of improving readability and verifiability: 

 RHS2 = RHS2 - deriv(1,1,u2**2/u1+phi)
 RHS2 = RHS2 + deriv(2,1,dx2*u2 + 4*k3*k4/3*u2/u1)

It is more likely, however, that there isn’t even a spec to verify the code against. When we 
attempted to verify GTC and asked for a specification for the application, we received this somewhat 
humorous reply: “There is one physicist at the lab who actually went through the code line by line 
and took some notes. Unfortunately, these notes are not in electronic format, and worse... they’re in 
Chinese.” 

There may have been a specification originally, but the source code evolved over time, while the 
spec was never updated. To mitigate the divergence of spec and source code, we looked at making 
source code, even Fortran, as readable as possible and interleaving source code with specification 
or documentation. We tried an implementation of the HPCS graph analysis benchmark, SSCA #2, 
where the “source code” was HTML from which a script could extract Fortran code to compile and 
execute. This approach to having a single artifact to maintain, instead of disjointed specification 
and source code, is similar to ideas found in Mathematica notebooks, Donald Knuth’s Literate 
Programming, and Scientific WorkPlace. 

Validation is also difficult. One must compare results in particular parameter regimes to results 
that might be known from analysis or predecessor codes. Since validation is so expensive and 
depends so critically on experienced scientific understanding and intuition, over most of an HPC 
application’s lifetime one simply checks software modifications by comparing results with an earlier 
version of the code. Whereas the science is meaningful to only limited precision (say, 1 percent or 
even 10 percent), checking numerical results in HPC usually means checking fickle floating-point 
arithmetic out to the least significant digit. We found cases, for example, where we refrained from 
changing the source code because changing ((2*pi)*k)/N to 2*((pi*k)/N) or changing X*(1/deltat) to X/
deltat changed floating-point results subtly. We do not know if the results were more accurate or less, 
only that they were slightly different. These differences prevented us from making the source code 
more readable or run faster.
 
PROGRAMMERS’ PRIORITIES 
Project deadlines force software to be written quickly. Many expedient writing styles, however, cause 
programs to become longer and therefore more difficult to read, understand, verify, and maintain. 
Meanwhile, many programming habits develop in a culture of fast prototyping, where programmers 
avoid advanced language features since their support is immature, and focus instead on the last drop 
of performance. As presented in Donn Seeley’s ACM Queue article, “How Not to Write Fortran in Any 
Language” (December/January 2004/2005), examples of poor programming practices abound. 

Programming for verifiability is often not a priority, as the BT example illustrated. 
As another example, in sPPM we found thousands of lines of code for handling boundary 

conditions. The rewritten code used only about a dozen lines. There are many reasons for this 
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astounding reduction, but one issue is that the original code attempted to fill in “ghost cells” only 
when their values would be needed. (Ghost cells are replicas of real computational cells, where such 
replication can simplify the handling of boundary conditions.) In the rewrite, we would routinely 
fill in all ghosts cells. Eliminating checks on whether such updates were needed facilitated the 
programming logic immensely, with nearly no overall performance loss in the cases we studied. In 
HPC, the mindset is usually to program for performance rather than programmability even before 
establishing whether a particular section of code is performance sensitive or not. 

The ISO/IEC standard on software maintenance adopted the term perfective maintenance. 
Modifying source code simply to improve its maintainability, however, often receives scant attention 
when other objectives—such as fixing defects, implementing new features, tuning performance, and 
migrating to new platforms—clamor for attention. 

The NPB BT source code takes hundreds of lines of code to compute the time derivative dU/dt to 
form the “right-hand side.” This computation appears to have been implemented from scratch twice, 
once in file rhs.f and again in exact_rhs.f. Even if this duplication of effort was overlooked originally, 
perfective maintenance should weed out such redundancy to benefit the generations of HPC workers 
who have had to look at this source code since it was first written—provided, of course, that this is 
important for the software’s owners.
 
WHERE DO WE GO FROM HERE? 
Repeating some of these programmability studies on larger HPC programs would be interesting. In 
particular, it would be nice to move from self-contained programs that are small enough for one 
person to have written—what DeRemor and Kron would term “programming in the small”—to 
larger pieces of software, written by many people and where interfaces among many parts are 
important (“programming in the large”). Like nature, source code looks different at different 
scales: from fast prototyping, to self-contained applications, to multi-decade legacy code. Further 
work to relate source-code characteristics empirically to human productivity metrics would also be 
interesting. 

Most of all, the HPC community could well benefit from a community-wide effort to emphasize 
programmability and human productivity. No one piece comes first. Progress is required on all 
fronts: language development, compiler maturity, hardware innovations, HPC software development 
practices, and even procurements and competitive benchmarking. 

When we start with an existing language, however, we benefit from available compilers, systems, 
reference codes, experience, and programmers. Q
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