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ABSTRACT 

The issue of whether IS positivist researchers were validating their instruments sufficiently was 
initially raised fifteen years ago.  Rigor in IS research is still one of the critical scientific issues 
facing the field.  Without solid validation of the instruments that are used to gather data on which 
findings and interpretations are based, the very scientific basis of the profession is threatened.   

This study builds on four prior retrospectives of IS research that conclude that IS positivist 
researchers continue to face major barriers in instrument, statistical, and other forms of validation.  
It goes beyond these studies by offering analyses of the state-of-the-art of research validities and 
deriving specific heuristics for research practice in the validities.  Some of these heuristics will, no 
doubt, be controversial.  But we believe that it is time for the IS academic profession to bring such 
issues into the open for community debate. This article is a first step in that direction.     

Based on our interpretation of the importance of a long list of validities, this paper suggests 
heuristics for reinvigorating the quest for validation in IS research via content/construct validity, 
reliability, manipulation validity, and statistical conclusion validity. New guidelines for validation 
and new research directions are offered. 

Keywords: IS research methods; rigor; measurement; psychometrics; validation; reliability; 
content validity; construct validity; convergent validity; discriminant validity; nomological validity; 
predictive validity; concurrent validity; unidimensional reliability; factorial validity; manipulation 
validity;  statistical conclusion validity; formative and reflective measures; quantitative, positivist 
research; heuristics; guidelines; structural equation modeling; LISREL; PLS. 

I. INTRODUCTION 

Fifteen years ago, Straub [1989] raised the issue of whether IS positivist researchers were 
sufficiently validating their instruments.  Information systems (IS) research is a dynamic and ever 
changing field and since then the IS profession was exposed to many opportunities and 
challenges.  E-Commerce rose and, at least the term “e-Commerce,” fell in prominence.  Other 
management trends passed through their cycles.  Our professional society, the Association of 



Communications of the Association for Information Systems (Volume13, 2004)380-427                            381 

Validation Guidelines for IS Positivist Research by D. Straub, M. Boudreau and D. Gefen 

Information Systems (AIS), was formed and amalgamated with the preeminent research 
conference in the field, the International Conference on Information Systems, and formed an 
alliance with one of the premier journals in the field, the MIS Quarterly.   

But have such momentous events in the life of the profession also been reflected in dramatic 
improvements in scientific practices, especially those related to validation of our research 
instruments?  A brief history of the validation phenomenon should answer this question, in part, at 
least.  In 1989, Straub’s call for new efforts to validate IS research instruments was based on a 
straight-forward survey of the use of various techniques for gathering empirical data. He found 
that only 17% of the articles in three widely referenced IS journals over the previous 3 years 
reported reliability of their scales, only 13% validated their constructs, while a scant 19% used 
either a pretest or a pilot test.  The argument for validation of instruments was based on the prior 
and primary need to validate instruments before such other crucial validities as internal validity 
and statistical conclusion validity are considered.  Three follow-up studies by Boudreau et al. 
[2004], Boudreau et al. [2001], and Gefen et al. [2000] suggest that the field is moving slowly but 
steadily toward more rigorous validation in positivist work.  These studies also found that nearly 
all forms of instrument validation were still in the minority of published articles in MIS Quarterly, 
Management Science, Information Systems Research, Journal of Management Information 
Systems, and Information & Management. 

It is important to note at the outset that we are not maintaining in any way that positivist work is 
superior (or inferior) to post-modern approaches.  We simply do not taking any stand on that 
issue. The paper is addressed at positivist, quantitative researchers who already accept the 
epistemological stance that their line of inquiry is useful and defensible.  Realizing that this 
approach characterizes the work of many North American academics, we imply absolutely 
nothing about the quality of the work in other parts of the world that may or may not adopt the 
quantitative, positivist intellectual position.  Stated in absolute terms, this epistemological stance 
is that the world of phenomena involves an objective reality that can be measured and that 
relationships between entities in this world can be captured in data that is reasonably 
representative and accurate.  Since the entities of significance can be present in data about them, 
the causal linkages between entities can also be assessed.  This simple assertion  presents the 
most extreme version of this line of inquiry. It is perhaps fitting to indicate that many modern 
positivist researchers are willing to accept the possibility that many of the entities they articulate 
are social constructions. However, the “permanent” presence of these constructs in the real world 
allows them to be evaluated along the same lines as harder and less demonstrably subjective 
realities. In short, many contemporary positivist researchers are willing to consider constructs as 
a “fuzzy set” rather than as the near perfect surrogate of an objective reality.   

These concessions do not in any way diminish the strength of belief of many positivist 
researchers that we are able to capture approximations of real world entities, many of which are 
intellectual (or social) constructions to be sure.  Capturing these entities is a process that can be 
fraught with difficulties. One of the most tenacious of these is the inability of the IS community to 
know whether the measures being selected and used by the researchers are valid.  The concept 
is that straight-forward.   

• Valid measures represent the essence or content upon which the entity or construct 
is focused.   

• They are unitary.   

• They are not easily confused with other constructs.  

• They predict well.   

• If they are supposed to manipulate the experience of subjects, they do so. 

The current study builds on analyses of IS research since the turn of the millennium, namely, 
Gefen et al. [2000], Boudreau et al. [2001], and Boudreau et al. [2004], which, in brief, conclude 



 382                          Communications of the Association for Information Systems (Volume 13, 2004)380-427             

 

Validation Guidelines for IS Positivist Research by D. Straub, M. Boudreau and D. Gefen 

 

that IS positivist researchers still have major barriers to overcome in instrument, statistical, and 
other forms of validation.  The present study goes far beyond Straub [1989], Gefen et al. [2000], 
Boudreau et al. [2001], and Boudreau et al. [2004] by extending these prior articles through 
discussion of other critical validities such as: 

• Nomological validity 

• Split-half reliability 

• Test-retest reliability 

• Alternate forms of reliability 

• Inter-rater reliability 

• Unidimensional reliability 

• Predictive validity 

• Manipulation validity 

The main contribution of this study is to offer research heuristics for reinvigorating the quest for 
validation via  

• content validity,  

• construct validity,  

• reliability,  

• manipulation validity, and  

• statistical conclusion validity1.  

These heuristics are based on a thorough analysis of where the field stands with respect to all 
key instrument validities.  Some of these heuristics will, no doubt, be controversial. We believe 
that it is time for the IS academic profession to bring such issues into the open for community 
debate, and this article is an initial step in that direction.    

To build our case, it is necessary first to discuss each validity at some length (Section II).  
Specifically, content validity, construct validity, predictive validity, reliability, manipulation validity, 
and statistical conclusion validity are presented. Discussion of these validities serves as a 
reference point for proposing specific heuristics in each validation category (Section III). To 
provide extra guidance, each heuristic is qualified as being mandatory, highly recommended, or 
optional. Then, to demonstrate that these heuristics are attainable, an example of how 
instruments can be developed is presented in Section IV. The final section offers concluding 
remarks.  

II. REVIEW AND REASSESSMENT OF VALIDATION PRINCIPLES 

Viewed from the perspective of the long history of the philosophy of science, validation of 
positivist research instruments is simply a late 20th century effort of the academic disciplines to 
understand the basic principles of the scientific method for discovering truth [Nunnally, 1978].  
Assuming that nature is to some extent objectively verifiable, the underlying truths of nature are 
thought to be revealed slowly and incrementally, with the exception of occasional scientific 
revolutions of thought [Kuhn, 1970].  This process of “normal” positivist science is also believed to 
result from successful paradigms that invoke theories, in which causally-linked intellectual 
                                                      

1 A glossary of the terms used in this article is presented at the end of the paper. This glossary 
includes validation concepts and techniques, and heuristics.  
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constructs represent underlying natural [Kuhn, 1970], artificial [Simon, 1981], or social 
phenomena [Blalock, 1969].  “Normal” science also includes a consideration of methods favored 
by given disciplines and deemed to be valid for the discovery of truth [Scandura and Williams, 
2000]. In positivist science, the need to ensure that the data being gathered is as objective as 
possible and a relatively accurate representation of the underlying phenomenon is paramount. 

Social science or behavioral research, which describes a significant proportion of all IS research, 
can be more or less rigorously conceived or executed.  The rigor of the research design is often 
characterized by the extent to which the data being gathered is an accurate representation of 
latent constructs that may draw on numerous sources and kinds of data, and relevant to the 
theory that the researcher is attempting to build or test [Coombs, 1976].  Latent constructs are 
latent in the sense that they are not directly observable.  In short, there are no immediate or 
obvious measures that the scientific community would agree on that capture the essence of the 
construct.  The construct itself can be viewed as a social construction, represented by a set of 
intellectually-derived measures that are not self-evident or inherently “true” measures.  Measures 
are, therefore, indirect; they are surrogates, to a greater or lesser extent, of the underlying 
research construct.   

While these points express fundamental validation principles, they do not indicate specifically how 
a researcher attempting to use valid scientific methods should proceed at a pragmatic, concrete 
level.  This paper attempts to address this issue by setting forth specific guidelines, i.e., 
heuristics, for validation which are based on both intellectual soundness and best of breed IS 
research practice.   

How would one know which validation principles make sense, both on an individual basis and on 
the basis of the field as a whole?  The social sciences tend to develop validation principles 
concurrent with the pursuit of research.  Hence, practice and terminology vary widely.  Ironically, 
though, this question cannot be answered simply because scientific methods and techniques 
cannot themselves be used to validate the principles upon which they are based.  Scientific 
principles for practice are only accepted as received wisdom by a field or profession through 
philosophical disputation [Nunnally, 1978]. Over time, they become accepted norms of conduct by 
the community of practice. 

Articulation of validation principles and acceptance of validation ideas by the IS field depend 
strictly on calls to authority and the persuasiveness of the ideas themselves.  There are no 
established scientific standards against which to test or evaluate them.   

VALIDITY AND VALIDITY TOUCHSTONES 

The purpose of validation is to give researchers, their peers, and society as a whole a high 
degree of confidence that positivist methods being selected are useful in the quest for scientific 
truth [Nunnally, 1978].  A number of validities are discussed by Cook and Campbell [1979]. These 
terms and the respective terms used for these validities are:  

validation of data gathering instrument/instrumentation validity 
ruling out rival hypotheses internal validity 
statistical inference statistical conclusion validity 
generalizability external validity. 

 

Straub [1989] argues for an order of precedence in which these validities should be considered.  
The basic case is that instrument validation is both a prior and primary validation for IS empirical 
research.  In other words, if validation of one's instrumentation is not present or does not precede 
internal validity and statistical conclusion validity, then all other scientific conclusions are thrown 
into doubt (cf. also Andrews [1984]).  These “Validity Touchstones” and the consequences if they 
are considered or ignored are shown in Figure 1. 
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Based on [Straub 1989] 
Green is preferred path; yellow is cautionary; red is least desirable path 

 

Figure 1.  Validity Touchstones 

To articulate the specific validation principles being referred to, we next briefly review and 
reassess the validation principles discussed in Straub [1989].  This discussion provides 
completeness, adds to the previous work,  and presents new thoughts on IS instrument validities 
in the context of heuristics for practice.  Based on this review and on building the cases for 
heuristics, findings from empirical studies of the use of validities in IS will be more meaningful.  
Validities to be reviewed along with heuristics and typical techniques are discussed with 
exemplars in IS research in Table 1.  

CONTENT VALIDITY 

Content validity is an issue of representation.  The essential question posed by this validity is:  

Does the instrumentation (e.g., questionnaire items) pull in a representative 
manner from all of the ways that could be used to measure the content of a given 
construct [Cronbach, 1971, Kerlinger, 1964] ? 

 

 

 

 

Mathematical relationships 
between the presumed 
constructs are assured within 
certain degrees of confidence; 
rival hypotheses are possible; 
constructs may not be real and 
reliable; instrument may be 
measuring the wrong content.

Statistical Conclusion 
Validity

Internal 
Validity

Instrumentation 
Validity

Time

Mathematical relationships 
between the presumed 
constructs are assured within 
certain degrees of confidence; 
rival hypotheses are ruled out; 
constructs may not be real and 
reliable; instrument may be 
measuring the wrong content.

Mathematical relationships 
between the constructs are 
assured within certain degrees 
of confidence; rival 
hypotheses are ruled out; 
constructs are likely real and 
reliable; instrument is likely 
measuring the right content.

Rival hypotheses are ruled out; 
constructs may not be real and 
reliable; instrument may be 
measuring the wrong content.

Rival hypotheses are ruled out; 
constructs are likely real and 
reliable; instrument is likely 
measuring the right content.

Constructs are likely real and 
reliable; instrument is likely 
measuring the right content.
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Table 1.  Validities, Heuristics, and Examples in IS Research 

 
Validity Component 

 
Heuristics/Techniques 

 
Comments/Pros and 

Cons 

 
Examples in IS Research 

Content Validity Literature review; expert 
panels or judges; content 
validity ratios [Lawshe, 
1975]; Q-sorting 

Infrequent in IS research. [Smith et al., 1996]; 
[Lewis et al., 1995]; 
[Storey et al., 2000] 
 

Construct Validity 
 
Discriminant validity 
(sometimes erroneously 
called divergent validity) 

 
 
MTMM; PCA; CFA as used 
in SEM; PLS AVE analysis; 
Q-sorting 

 
 
MTMM rare in IS research; no 
well accepted statistical 
thresholds for MTMM, but 
without at least a two method 
comparison, other techniques 
do not account as well for 
common methods bias [for an 
opposing argument, see 
Bagozzi et al. [1991]. 

 
 
[Igbaria and Baroudi, 1993]; 
[Venkatraman and 
Ramanujam, 1987]; 
[Straub, 1990] 
 
 

Convergent validity MTMM; PCA; CFA as used 
in SEM; Q-sorting 

Rare in IS research. No well 
accepted statistical thresholds 
for MTMM, but without at least 
a two method comparison 
other techniques do not 
account as well for common 
methods bias. 

[Igbaria and Baroudi, 1993]; 
[Venkatraman and 
Ramanujam, 1987]; 
[Straub, 1990]; 
[Gefen, 2000] 

Factorial validity PCA; CFA as used in SEM Favored technique in IS 
research; assesses 
discriminant and convergent 
validity; common methods bias 
remains a threat to validity 
without at least a two method 
comparison. 
 
 

[Brock and Sulsky, 1994]; 
[Adams et al., 1992]; 
[Doll and Torkzadeh, 1988]; 
[Barki and Hartwick, 1994] 

Nomological validity Judgmental comparison 
with previous nomological 
(theoretical) networks; 
patterns of correlations; 
regression; SEM 

Infrequent, likely because of 
the lack of widely-accepted 
theory bases in IS. 

[Igbaria and Baroudi, 1993]; 
[Straub et al., 1995]; 
[Pitt et al., 1995]; 
[Smith et al., 1996] 

Predictive validity 
(a.k.a.  concurrent or 
post-diction validity)   

Correlations; Z-scores; 
discriminant analysis; 
regression; SEM 

Useful, especially when there 
is a practical value to the 
prediction; used little in the 
past, but becoming more 
frequent in IS research. 

[Szajna, 1994]; 
[Pitt et al., 1995]; 
[Van Dyke et al., 1997]; 
[Collopy et al., 1994]; 
[Smith et al., 1996] 

Common methods bias / 
method halo 

MTMM, CFA through 
LISREL 

Notably rare in IS and related 
research, especially when data 
is collected via surveys.  
 
 

There is an excellent example 
in the psychological literature: 
[Marsh and Hocevar, 1988]; 
see, however, Woszczynski  
and Whitman [2004] 

Reliability 
Internal consistency 

 
Cronbach's α; correlations; 
SEM composite 
consistency estimates 

 
α assumes that scores for all 
items have the same range 
and meaning; if not true, 
adjustments can be made in 
the statistics; also, 
nonparametric correlations can 
be plugged into the 
formulation. 
 

 
[Grover et al., 1996]; 
[Sethi and King, 1994] 
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Validity Component 

 
Heuristics/Techniques 

 
Comments/Pros and 

Cons 

 
Examples in IS Research 

Split half Cronbach's α; correlations 
 

Different results may be  
obtained depending on how 
one splits the sample; if 
enough different splits are 
made, the results approximate 
internal consistency 
Cronbach's α. 

[McLean et al., 1996] 
 

Test-retest Cronbach's α; correlations; 
SEM estimates 

Comparisons across time of an 
instrument. 

[Hendrickson et al., 1993]; 
[Torkzadeh and Doll, 1994] 

Alternative or equivalent 
forms 

Cronbach's α; correlations; 
SEM estimates 

Comparisons across time and 
forms of an instrument. 

[Straub, 1989] 

Inter-rater reliability Percentages; correlations; 
Cohen’s Kappa 

Transformation of correlations 
suggested. 

[Massetti, 1996]; 
[Lim et al., 1997]; 
[Boudreau et al., 2001] 

Unidimensional 
reliability 

SEM, as performed in 
LISREL 

Novel, sophisticated technique 
for assessing reliability . 

[Segars, 1997]; 
[Gefen, 2000]; 
[Gefen, 2003]  

Manipulation Validity 
(a.k.a.  manipulation 
checks) 

Percentages; t-tests; 
regression; discriminant 
analysis 

No standard procedures are 
agreed upon; practice varies 
significantly. 

[Keil et al., 1995]; 
[Straub and Karahanna, 1998] 

 

As Figure 2 shows, researchers have many choices in creating means of measuring a construct.  
Did they choose wisely so that the measures they use capture the essence of the construct?  
They could, of course, err on the side of inclusion or exclusion.  If they include measures that do 
not represent the construct well, measurement error results.  If they omit measures, the error is 
one of exclusion. 

Universe of all possible measures 
for a given construct

Drawing representative 
measures for an 

instrument

 

Figure 2.  A Pictorial Model of Content Validity 

 Whereas many psychometricians [Barrett, 1980-81, Barrett, 1981, Nunnally, 1978] indicate that 
content validity is a valuable, albeit complex tool for verifying one's instrumentation, others argue 
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that it is a concept that cannot be validated because it deals essentially with an essentially 
unknowable sampling issue and not an instrument evaluation issue [Guion, 1977]. 

As discussed in Straub [1989], content validity is established through literature reviews and 
expert judges or panels.  Several rounds of pretesting the instrument with different groups of 
experts is highly advisable.  Empirical assessment of this validity is generally not required, 
although Lawshe [1975] provides a procedure and statistic for testing the level of validity. 

Clearly, if there is such a thing, content validity is not easy to assess.  With what degree of 
certainty can a researcher know that he or she is drawing representatively from the “content 
universe” ([Cronbach, 1971], p. 455) of all possible content?  Even if experts, panels of judges, 
and/or field interviews with key informants are used, as recommended [Cronbach, 1971, Straub, 
1989], it is not guaranteed that the instrument items are randomly drawn because the universe of 
the items itself is indeterminate [Cronbach, 1971, Lawther, 1986, Nunnally, 1978, Straub, 1989].  
The most commonly employed evaluation of this validity is judgmental and is highly subjective.2  
Moreover, it may well be, as Guion [1977] asserts, that content validity is in essence merely 
content sampling and, ultimately, an evaluation of construct validity.3  Carrier et al. [1990] present 
evidence that content validity is significantly correlated with predictive validity, so it may, indeed, 
be the case that content validity is not a validity in its own right. 

 In their 2001 assessment of the practice of instrument validation in IS, Boudreau et al. [2001]4 
indicate that only 23% of the articles they sampled examined content validity.  As for pretesting, 
the “preliminary trial of some or all aspects of an instrument” [Alreck and Settle, 1995], a 
technique which often leads to content validity, Boudreau et al. [2001] did not find this process 
widespread, in that only 26% of their sampled articles used such a technique.  

 

Vignette #1: Example of Content Validity 

A good example of content validation can be found in Lewis et al.’s work [1995]. These authors 
validated the content of their information resource management (IRM) instrument via Lawsche’s 
quantitative approach [1975].  In this research, panelists scored a set of items derived from a 
literature review of the IRM concept, using the scale “1=Not relevant, 2=Important (but not 
essential), and 3=Essential.”  From these data, a content validity ratio (CVR) was computed for 
each item using Lawsche’s formulation [1975].  Based on a table in Lawsche [1975], the CVR for 
each item was evaluated for statistical significance (.05 alpha level), significance being 
interpreted to mean that more than 50% of the panelists rate the item as either essential or 
important. 

 

Heuristics for Content Validity 
Having valid content is desirable in instruments for assuring that constructs are drawn from the 
theoretical essence of what they propose to measure.  In spite of detractors, many seem to 
resonate with the idea of content validity.  Therefore, at this point in the history of the positivist 
sciences, lacking clear consensus on the methods and means of determining content validity, we 
would argue that it is a highly recommended, but not mandatory practice for IS researchers. 

                                                      
2 On the other hand, see Lawshe [1975], who proposes quantitative measures for this validity.  
3 Rogers [1995] also considers content validity, along with criterion-related validity, as subtypes of 
construct validity; for him, construct validity has become “the whole of validity.” 
4 Boudreau et al. [2001] coded positivist, quantitative research articles for use of validation 
techniques.  They examined five major journals over a three year period from 1997 to 1999. 
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CONSTRUCT VALIDITY 

Construct validity is an issue of operationalization or measurement between constructs.  The 
concern is that instrument items selected for a given construct are, considered together and 
compared to other latent constructs, a reasonable operationalization of the construct [Cronbach 
and Meehl, 1955].  Validation is not focused on the substance of the items, other than, perhaps, 
its meaningfulness within its usual theoretical setting [Bagozzi, 1980].  In general, substance and 
straightforward definitions of the construct are matters for content validity. 

As illustrated in Figure 3,  construct validity raises the basic question of whether the measures 
chosen by the researcher “fit” together in such as way so as to capture the essence of the 
construct.  Whether the items are formative or reflective, other scientists want to be assured that, 
say, yellow, blue, or red measures are most closely associated with their respective yellow, blue, 
or red latent constructs.  If, for instance, blue items, in the presence of other variables like the 
yellow construct,  load on or are strongly associated with the blue construct, then we would say 
that they “converge” on this construct (convergent validity).5  If theoretically unrelated measures 
and constructs are considered alongside this variable, such as with latent construct C, then there 
should be little or no crossloading on constructs A or B.  In other words, the measures should 
“discriminate” among constructs (discriminant validity).  Note that constructs A and B are posited 
to be linked, and, therefore, the test for discriminating between theoretically connected 
independent variables (IVs) and dependent variables (DVs) is a robust one indeed, and it may not 
always work out.  In general, therefore, it is best not to mix IVs and DVs in factoring.  The most 
reasonable test for whether the links are similar to those found in past literature (known as a 
“nomological network” of theoretical linkages) looks at path significance.  If the path, indicated by 
the red arrow in Figure 3, is significant, then we can say that construct validity has been 
established through nomological validity as well. 

 

Latent
Reflective 
Construct 

A

Measure
1

Measure
2

Measure
3

Measure
4

Measure
5

Measure
6

Latent
Formative 
Construct 

B

Latent
Reflective 
Construct 

C

Measure
7

Measure
8

 

 
Figure 3.  Pictorial Model of Construct Validity 

                                                      
5 It is useful to compare an independent variable against other independent variables as well.  Likewise for 
dependent variables.  Mixing independent variables and dependent variables is often done, but not a 
practice we recommend. 
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It should be noted that nomological validity resembles hypothesis testing in that it focuses on the 
paths.  The stress in this form of validity, though, is slightly different in that it focuses on likeness 
or lack of similarity to strength of construct linkages in the past literature.  Comparisons with, for 
example, the explained variances in prior work would be appropriate for an analysis of 
nomological validity. 

Differences from Internal Validity and Forms of Construct Validity 
Construct validity differs from internal validity in that it focuses on the measurement of individual 
constructs while internal validity focuses on alternative explanations of the strength of links 
between constructs [Straub, 1989].  Internal validity can be easily mistaken for construct validity 
[cf. [Smith et al., 1996] as a case in point where both validities are stated to be testing the 
relationships between constructs], but their focus is really quite different.  In establishing internal 
validity, the researcher is trying to rule out alternative explanations of the dependent variable(s).  
In establishing construct validity, the researcher is trying to rule out the possibility that constructs, 
which are artificial, intellectual constructions unobservable in nature, are being captured by the 
choice of measurement instrumentation.  Nomological validity, which is one form of construct 
validity, does test strength of relationships between constructs but only to examine whether the 
constructs behave as they have in the past, that is, within the nomological or theoretical network 
that the researchers have defined. 

Besides nomological validity, discriminant, convergent, and factorial validity are all considered to 
be forms of or variations on construct validity.  Moreover, criterion-related validity and its sub-
types, predictive and concurrent validity [Cronbach, 1990, Rogers, 1995] are also considered to 
be constituents of construct validity.6  In Boudreau et al., [2001], 37% of the articles sampled by 
the authors established construct validity based on one (or many) of its aforementioned 
constituents, which are described next. 

Discriminant Validity 
One test of the existence of a construct is that the measurement items posited to reflect (i.e., 
“make up”) that construct differ from those that are not believed to make up the construct.7  
Campbell and Fiske's multitrait-multimethod analysis (MTMM) [1959] can be helpful in 
understanding the basic concept of discriminant validity and is one mechanism for testing it.  In 
their seminal article, Campbell and Fiske [1959] argue that choice of method (common methods 
bias) is a primary threat to construct validity in that study participants will, under inapt 
circumstances, tend to respond in certain patterns if the instrumentation, unwittingly, encourages 
such responses.   

As an example, consider typical empirical circumstances underlying tests of TAM.  Most 
researchers use a single instrument to query respondents or subjects about acceptance of a 
particular technology or application.  Thus, questions about perceived usefulness and ease of use 
are followed by questions about intention to use a system or its actual usage.  This means of 
testing TAM involves inherent common methods biasing because all measures are self-reported 
and undoubtedly tied together in the minds of the respondents.  Consider whether subjects can 
truly separate a question about use from a question about how easy to use or how useful a 
system is.  Cognitive dissonance theory would suggest that respondents who felt that the system 

                                                      
6 It should be noted that some conceptualize predictive validity as separate and distinct from construct 
validity (e.g., [Bagozzi, 1980, Campbell, 1960, Cronbach, 1990]).  Other methodologists, however, believe 
that it may be an aspect of construct validity in that successful predictions of links of constructs to variables 
outside a theoretical domain also validates, in a sense, the robustness of the constructs [Mumford and 
Stokes, 1992]. 
7 See the discussion in Gefen et al. [2000] explaining the distinction between reflective and formative 
variables.   
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was useful would feel the need to answer in the affirmative that they planned to use it, and vice 
versa. To do otherwise, would require them to deal with an uncomfortable cognitive dissonance. 

To test formally an instrument for common methods bias, two methods (i.e., instruments or data 
gathering-coding methods) are required [Straub, 1989].  These methods should be “maximally 
different” ([Campbell and Fiske, 1959], p. 83) so that the distinctions in the underlying true scores 
attributable to method are revealed.  Measures (termed “traits” in MTMM) show discriminant 
validity when the correlation of the same trait and varying methods is: 

• significantly different from zero and  

• higher than that trait and different traits using both the same and different methods. 

Tests of discriminant validity in IS research typically do not use MTMM, perhaps because its rules 
of thumb are ambiguous [Alwin, 1973-74] and it is labor-intensive, requiring two very different 
methods of gathering all data.  In certain cases, it may be the only approach available to test 
discriminant validity, though.  When measures are formative rather than reflective 
[Diamantopoulos and Winklhofer, 2001, Fornell and Larcker, 1981, Gefen et al., 2000], for 
instance, the measures “causing” the latent construct may lack high inter-correlations and 
assume different weights, as in a regression with multiple independent variables.  Methods used 
to test validity of formative measures rely on principles articulated in the original Campbell and 
Fiske MTMM technique [1959].  Podsakoff et al. [2003] present models for testing common 
methods bias, approaches which can be useful in proving the validity of formative measures.  

One method for creating a weighted, summed composite score for the “latent” construct is 
suggested by the mathematical formulation in Bagozzi and Fornell [1982].  These composites 
scores can be compared against a normalized score for each measure to be certain that items 
relate more strongly to their own latent construct than to other constructs.  Ravichandran and Rai 
[2000] offer another technique for testing formative measures along this line of thinking.   

Finally, Loch et al. [2003] offer an alternate discriminant validity test of formative latent variables 
using PLS weights.  In their approach, weights from a formative PLS model of the indicators 
(measures) is used to derive/calculate a latent construct value for each variable.  These values 
are then compared using a modified MTMM analysis.  In the case of this particular study, latent 
variables were sufficiently different in posited directions to argue that the instrument is valid. 

Other techniques besides these three can be used to evaluate discriminant validity.  In that many 
of these techniques are based on variants of factor analysis, they will be discussed below under 
“factorial validity.”  But one such innovative means of verifying discriminant validity is Q-sorting 
[Moore and Benbasat, 1991, Segars and Grover, 1998, Storey et al., 2000, Thomas and Watson, 
2002].  Q-sorting combines validation of content and construct through experts and/or key 
informants who group items according to their similarity.  This process also eliminates (i.e., 
discriminates among) items that do not match posited constructs. 

Features of covariance-based SEM likewise permit the assessment of discriminant validity.  It is 
shown by comparing two models, one which constrains the item correlations to 1 and another 
which frees them, i.e., permits them to be estimated [Segars, 1997].  By comparing the χ2s of the 
two models, it is possible to test for discriminant validity.  A significant difference between the 
models, which is also distributed as χ2 [Anderson and Gerbing, 1988], indicates that the posited 
construct items are significantly different from other construct items in the overall model.  This 
analysis is becoming more frequent in IS research (see Gefen et al., [2000], for a running 
example and Gefen [2003] for a mainstream publication that assesses this analysis.)  
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Vignette #2: Examples of Discriminant Validity 

In several examples in IS research other than Straub [1989] and Straub [1990], a formal MTMM 
analysis was used via two extremely different methods, namely comparisons of pencil-and-
paper questionnaire responses and interview responses to the same questions.  Igbaria and 
Baroudi [1993] developed an instrument to measure career anchors and employee's self-
concepts.  The nine career anchors were: technical competence; managerial; autonomy; job 
security; geographic security; service; pure challenge; life-style; and entrepreneurship. Arguing 
that they are using MTMM, they compared within-construct interitem correlations to between-
construct inter-item correlations. Examination of the correlation matrix of 25 items showed that 
of the 300 comparisons, only 9 did not meet the 50% violation-criteria specified by Campbell 
and Fiske [1959].  A legitimate question to raise in this context is whether Igbaria and Baroudi 
[1993] are truly using multiple, maximally different methods in evaluating their instrument. 

An example of a study using a different technique than MTMM to assess discriminant validity is 
Segars and Grover [1998].  They use Q-sorting to validate the construct and sub-constructs of 
strategic information systems planning (SISP). Their literature review found four dimensions of 
SISP with 28 associated planning objectives.  A random listing of the 28 objectives in single 
sentence format were provided on pages separate from the 4 sub-construct dimensions of: (1) 
alignment, (2) analysis, (3) cooperation, and (4) improvement capabilities.  Experts and key 
informants were asked to sort the objectives into the four dimensions.  The overall percentage 
of correct classification was 82%, with individual items correctly classified at a rate of 90% or 
better being retained.  Twenty-three objectives exhibited consistent meaning across the panel 
and were adopted as measures of their associated constructs.  

Convergent Validity 
Convergent validity is evidenced when items thought to reflect a construct converge, or show 
significant, high correlations with one another, particularly when compared to the convergence of 
items relevant to other constructs, irrespective of method.8  The comparison with other constructs 
is one element that distinguishes convergent validity from reliability. 

A classic method for testing convergent validity is MTMM analysis.  As discussed at length in 
Campbell and Fiske [1959] and Straub [1989], this highly formal approach to validation involves 
numerous comparisons of correlations and correlational patterns.  Percentages smaller than 
chance of violations of convergent and discriminant validity conditions in the matrix of trait (or 
item) and method correlations indicate that the methods are equally valid. 

Problems with MTMM are legion.  Bagozzi [1980] and Bagozzi and Phillips [1982] argue that 
counting violations in a correlation matrix is an arbitrary procedure that can lead to incorrect 
conclusions.  If a researcher gathered data via more than one method, Bagozzi [1980] shows 
how SEM can be used to examine method versus trait variance as well as other validity 
properties of the entire MTMM matrix of correlations.  SEM indeed permits the assessment of 
convergent validity: when the ratio of factor loadings to their respective standard errors is 
significant, then convergent validity is demonstrated [Segars, 1997]. The most thorough analysis 
of tests for methods bias within the context of convergent validity appears in Podsakoff et al. 
[2003]. 

                                                      
8 Convergent validity is important for reflective variables, but less so for formative ones. In fact, one 
definition of formative constructs is that the measures need not be highly correlated.  Socio-economic status 
is measured by such items as household income and the number of children per household; these are both 
indicators of this status, but may not be correlated ([Jöreskog and Sörbom, 1989]).  See Gefen et al. [2000] 
for definitions and Diamantopoulos and Winklhofer [2001] for a detailed discussion.  
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As with discriminant validity, MTMM analysis of convergent validity is infrequent in IS research.  
MTMM’s requirement for gathering of data through at least two “maximally different methods” 
([Campbell and Fiske, 1959], p. 83) places such a heavy burden on researchers that they may be 
shying away from it.  In fact, no matter how much the community wishes to have valid 
instruments, it is possibly overmuch to ask researchers to engage in this level of validation at an 
early stage in a research stream.  Several examples involving MTMM application are described  
below, but IS researchers probably only need to apply MTMM after a research stream matures 
[Straub, 1989]. A more exacting need is to rule out methods bias.  Clearly, a pressing need is to 
scrutinize the entire TAM research stream for common methods bias (e.g., [Straub et al., 1995]).   

  Vignette #3: Examples of Convergent Validity 

A case where MTMM was used to assess convergent validity was [Venkatraman and 
Ramanujam, 1987]. These authors are true to the letter and spirit of MTMM in gathering their data 
via very different sources (methods).  Self-reported data are compared to archival 
(COMPUSTAT) firm data for three measures of business economic performance (BEP) ⎯ sales 
growth, profit growth, and profitability.  The MTMM analysis found strong support for convergent 
validity and moderate support for discriminant validity.  What this finding suggests is that method 
plays little to no role in measures of BEP, i.e., subjective managerial assessments of performance 
are equal in validity to objective measures.   

Another MTMM analysis was reputedly performed in Davis [1989].  Comparing user responses to 
the technologies of Xedit and E-mail, he treats these technologies as if they were distinct and 
separate data gathering “methods,” in the sense of Campbell and Fiske [1959].  When Campbell 
and Fiske [1959] speak of “maximally different” methods, however, they clearly have in mind 
different types of instrumentation or source of information, such as pencil-and-paper tests versus 
transcribed interviews, or course evaluations by peers versus evaluations by students.  Different 
technologies are likely not different “methods.”  Nevertheless, Davis [1989] examines the 
correlations of 1800 pairs of variables, finding no MTMM violations in his tests for convergent 
validity (monotrait-monomethod triangle) and for discriminant validity of perceived usefulness.  He 
found only 58 violations of 1800 (3%) for discriminant validity of perceived ease-of-use, which he 
interprets as acceptable. 

Factorial Validity 
While factorial validity was discussed briefly in Straub [1989], several points of clarification are 
definitely in order.  Factorial validity can assess both convergent and discriminant validity, but it 
cannot rule out methods bias when the researcher uses only one method,9 which is by far the 
most frequent practice in IS research.  Moreover, if two or more methods are used to assess the 
instrument in question,10 there is evidence that MTMM is preferable to factor analytic techniques 
[Millsap, 1990].  Conversely, when only one method can be used in conducting the research, 
factorial techniques are likely more desirable than MTMM [Venkatraman and Ramanujam, 
1987].11   

Nevertheless, construct validity, specifically convergent and discriminant validity, can be 
examined using factor analytic techniques such as common factor analysis, PCA, as well as 
confirmatory factor analysis in SEM, such as LISREL and PLS.  Convergent and discriminant 

                                                      
9 It should be noted that whether methods bias is a significant problem in organizational research is an 
ongoing debate [Spector, 1987, Woszczynski and Whitman, 2004]. 
10 Since validation is “symmetrical and egalitarian” ([Campbell, 1960], p. 548), all data gathering/coding 
methods are actually being validated when an MTMM is used in assessment.  Nevertheless, only one of 
these methods may be intended for a major data-gathering effort, as in Straub [1989]. 
11 Several authors argue that MTMM involves limitations [Alwin, 1973-74], some of which have been solved 
by CFA and structural equation modeling [Bagozzi and Phillips, 1982]. 
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validity are established by examining the factor loadings to ensure that, once cross-loading items 
are dropped, items load cleanly on constructs (factors) upon which they are posited to load and 
do not cross-load on constructs upon which they should not load.12 

The point of factorial validity is to examine how variables in each distinct causal stage of the 
theoretical network behave.  What is not important is how measures may or may not cross-load 
among these stages.  In testing the construct validity of constructs A, B, C, D and E in Figure 4, 
for example, it is to be expected that measures for construct A might correlate highly with those of 
construct C, in that there is a posited causal link between the constructs.  It is even conceivable 
that some measures13 in construct A will correlate more highly with those in construct C than with 
other measures in its own construct, construct A.  Therefore, it is of primary interest to test 
construct A against construct B, which is another independent variable in the same causal stage 
explaining construct C.     

Having said that, it is important to recognize that covariance-based SEM takes into account all 
covariances, including those not explicitly specified in the model.  Consequently,  if the items in 
construct A are highly correlated with those in construct D, neglecting to specify explicitly that 
construct A is correlated with construct D will result in unacceptably low fit-indices. (Gefen et al., 
[2000], discuss and compare covariance-based SEM, PLS, and linear regression).   
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Figure 4.  Generic Theoretical Network with Constructs and Measures 

                                                      
12 How to handle items that do not load properly is a matter of some debate.  The issue is whether items that 
do not load properly should be dropped (as suggested by Churchill [1979] and by Gerbing and Anderson 
[1988] or not, as suggested by MacCallum and Austin [[2000]). The important point to note is that factor 
analysis can show the way to “clean up” the construct.   
13 If most of the variables across causal stages cross-loaded, then there could well be a serious problem 
with common methods bias [Campbell and Fiske, 1959].  As in MTMM analysis, the homotrait, homomethod 
correlations should always be highest in the matrix of methods/traits.  But cross-loading of some of the 
variables does not seriously threaten the validity of the instrument [Campbell and Fiske, 1959]. 
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The point of factorial validity is to examine the constructs independent of the theoretical 
connections. When PCA is used, in this case as an exploratory factor analysis technique, 
researchers can simply test the groups of variables separately.  In Figure 4, measures 1 through 
5 (constructs A & B) should be run in a separate PCA from the measures for construct C.  
Assuming that there are measures in the instrument other than those in this theoretical model, 
Construct C should be run separately from D and E, as well.14  The validation question the 
researcher is asking is whether the pattern of factor loadings corresponds with the a priori 
structure of latent constructs in each stage in the causal chain.  The theoretical question is 
whether the constructs are related.  Loadings across what are traditionally known as independent 
and dependent variables are, therefore, not relevant to the issue of construct validity and such 
tests may/should be avoided in PCA.  

SEM, on the other hand, facilitates examining factorial validity through a Confirmatory Factor 
Analysis (CFA).  That is, examining the “correctness” of the measurement model (specifying for 
each item its corresponding construct) that the researcher specified.  In the case of covariance-
based SEM, such as LISREL, CFA is first run where the researcher explicitly specifies the 
measurement model and runs the SEM in CFA mode.  The fit statistics of this CFA provide a 
good indication of the extent to which the measurement model accounts for the covariance in the 
data.  If the fit statistics are below the accepted thresholds, the research model is not supported 
by the data.  Covariance-based SEM techniques also allow a more detailed examination of the 
measurement model by comparing the χ2 statistic of the proposed measurement model to 
alternative ones [Bagozzi, 1980, Gefen et al., 2000, Segars, 1997].  In the case of PLS, SEM 
facilitates the examination of factorial validity by allowing the researcher to specify a-priori which 
items should load on which construct and then examining the correlations and the Average 
Variance Extracted (AVE).  Factorial validity is established when each item correlates with a 
much higher correlation coefficient on its proposed construct than on other constructs and when 
the square root of each construct’s AVE is notably larger than its correlation with other constructs 
[Chin, 1998a, Gefen et al., 2000, Karahanna et al., 1999].  Gefen et al. [2000] offer a detailed 
discussion.15 

Vignette #4: Example of Factorial Validity 

As an example of an empirical test using factorial validity, [Gefen et al., 2000] is worth 
examining because of its factorial comparisons across LISREL, PLS, and traditional factorial 
validity approaches like PCA.  In this case, the TAM measures are validated for use in a free 
simulation experiment in an e-commerce setting.  Principal components factor analysis 
verified the construct validity of the instrument for the regression tests of the posited TAM 
linkages.  In PLS and LISREL, the item loadings on the latent construct were sufficiently high 
and significant to indicate acceptable measurement properties.  

Nomological Validity 
Although not discussed in Straub [1989], nomological validity is a form of construct validity that is 
beginning to be seen more frequently for assessing construct validity.16  As described in 
                                                      
14 Control variables are often useful in running such tests of discriminant validity.   
15 It should be noted that many researchers use factorial validity to test convergent and discriminant validity.  
Factors that load cleanly together (and do not cross-load) are said to be evidence of “convergent” validity.  
Those that do not cross-load are evidence of “discriminant” validity. 
16 Westland [2004] argues that nomological validity was abandoned in psychology as a result of MTMM, but 
there are numerous examples of this form of validity being used in recent years in this literature [Dholakia 
and Bagozzi, 2003, Netemeyer et al., 2002, Nielsen et al., 2000, Webster and Compeau, 1996].  Moreover, 
it has been advocated and practiced in the business disciplines, notably Bagozzi [1980]; Netemeyer [1991]; 
McKnight [2002b]; Chin [1997]; Pitt [1995]; and Devaraj [2002].  We list other examples as well in the IS 
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Cronbach and Meehl [1955], Cronbach [1971], and Bagozzi [1980], nomological validity is 
construct validity that devolves from the very existence of a well developed theoretical research 
stream (also called a nomological “network”).  If theoretically-derived constructs have been 
measured with validated instruments and tested against a variety of persons, settings, times, and, 
in the case of IS research, technologies, then the argument that the constructs themselves are 
valid becomes more compelling.  This argument is even stronger when researchers choose 
different methods for measuring their constructs [Sussmann and Robertson, 1986]. 

Assume that one researcher uses a structured interview script to gather data on a construct.  
Suppose that another researcher in another setting uses a questionnaire instrument.  Clearly, the 
method of measurement is very, even maximally different.  Yet, if both studies find significant 
linkages between the constructs using different measures, then both may be said to be 
“nomologically” valid.  According to Campbell [1960], validation always works in both directions: it 
is “symmetrical and egalitarian” (p. 548). 

The same robustness would be demonstrated if a researcher using a variant form of construct 
measurement found similar significance as studies that had used the same validated instrument.  
A good example of this would be Straub et al. [1995] who use a variant of Davis' TAM instrument 
for self-reported measures of perceived usefulness, perceived ease of use, and perceived 
systems usage.  In spite of using variants of Davis' instrument items, the strength of the 
theoretical links in this study were similar to those of other works in this stream.  The inference 
that can be made from this similarity of findings is that, in testing the robustness of the 
instrumentation, the new study helps to further establish the nomological validity of the 
constructs. 

Vignette #5: Examples of Nomological Validity 

Igbaria and Baroudi [1993] examined nomological validity in their instrument development of 
an IS career orientations measurement instrument.  They found that six of nine correlations 
corresponded with those found between and among a variety of theoretical constructs in the 
literature.  Thus, this helps to establish the nomological validity of their instrument. 

A more recent study by McKnight et al. [2002a] examines the psychometric properties of a 
trust instrument.  To prove that trust is a multi-dimensional concept, these authors test the 
internal nomological validity of relationships among the trust sub-constructs.  For external 
nomological validity, they look at relationships between the trust constructs and three other e-
commerce constructs -- web experience, personal innovativeness, and web site quality. 

Ruling Out Common Methods Bias / Method Halo 
As explained above in passages dealing with MTMM, common methods bias, also known as 
“method halo” or “methods effects,” may occur when data are collected via only one method 
[Campbell and Fiske, 1959] or via the same method but only at one point in time [Marsh and 
Hocevar, 1988].  Data collected in these ways likely share part of the variance that the items have 
in common with each other due to the data collection method rather than to:  

•  the hypothesized relationships between the measurement items and their respective 
latent variables or  

•  the hypothesized relationships among the latent variables.  As a result of such inflated 
correlations, path coefficients and the degrees of explained variance may be overstated 
in subsequent analyses [Marsh and Hocevar, 1988].   

                                                                                                                                                              

literature later.  This is not to say that nomological validity is frequent practice.  But, in our opinion, it has 
certainly not been abandoned by either psychology or the business disciplines. 
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Common methods bias is reflected in MTMM when measurement items reflecting different latent 
constructs are correlated.  There are no hard and fast guidelines regarding the extent to which 
these items may be correlated before concluding that common methods bias is a problem 
[Campbell and Fiske, 1959, Marsh and Hocevar, 1988].   

A case from IS research will help to illustrate this threat.  In studies of TAM, some researchers 
appear not to randomize questions dealing with the constructs of perceived usefulness, perceived 
ease-of-use, and system usage.  As a result of this methodological artifact, respondents may be 
sensing the inherent constructs via the ordering of questionnaire items and they may respond 
accordingly.17  In Table 2, each column represents a possible ordering of questionnaire items of  

Table 2.  Item Ordering Threats to Construct Validity through Common  
Methods Bias 

 
Non-Randomized Presentation of Items  Randomized Presentation of Items 

1 I am very likely to try out CHART-MASTER.  2 I will very likely use CHART-MASTER. 
2 I will very likely use CHART-MASTER.  4 Using CHART-MASTER in my job would 

enable me to accomplish tasks more quickly. 
3 I will probably use CHART-MASTER.  5 I expect my company to use CHART-MASTER 

frequently. 
4 I intend to use CHART-MASTER.  8 I would find it easy to get CHART-MASTER to 

do what I want it to do. 
5 I expect my company to use CHART-

MASTER frequently. 
 9 Using CHART-MASTER would make it easier 

to do my job. 
   11 I would find CHART-MASTER easy to use. 

6 Using CHART-MASTER in my job would 
enable me to accomplish tasks more quickly. 

 15 I am very likely to try out CHART-MASTER. 

7 Using CHART-MASTER would improve my 
job performance. 

 18 Using CHART-MASTER would improve my job 
performance. 

8 Using CHART-MASTER in my job would 
increase my productivity. 
 

 19 It would be easy for me to become skillful at 
using CHART-MASTER. 

9 Using CHART-MASTER would enhance my 
effectiveness on the job. 

 21 Using CHART-MASTER in my job would 
increase my productivity. 

10 Using CHART-MASTER would make it easier 
to do my job. 

 23 Learning to operate CHART-MASTER would 
be easy for me. 

11 I would find CHART-MASTER useful in my 
job. 

 31 My interaction with CHART-MASTER would be 
clear and understandable. 

   34 I would find CHART-MASTER useful in my job. 
12 Learning to operate CHART-MASTER would 

be easy for me. 
 35 I will probably use CHART-MASTER. 

13 I would find it easy to get CHART-MASTER to 
do what I want it to do. 

 40 I would find CHART-MASTER to be flexible to 
interact with. 

14 My interaction with CHART-MASTER would 
be clear and understandable. 

 41 I intend to use CHART-MASTER. 

15 I would find CHART-MASTER to be flexible to 
interact with. 

 46 Using CHART-MASTER would enhance my 
effectiveness on the job. 

16 It would be easy for me to become skillful at 
using CHART-MASTER. 

   

17 I would find Chartmaster easier to use.    
the original Davis instrument [1989].  Column 1 presents the non-random ordering of the items 
that has characterized some TAM research.  It is clear that even individuals unfamiliar with TAM 
and its basic hypotheses could easily infer that items 1 to 5 in column 1 are related (usage 
measures) as are items 6 to 11 (perceived usefulness measures) and items 12 to 17 (perceived 
                                                      
17 Lack of random ordering of items may also explain some of the extremely high Cronbach alphas in the 
upper 0.90 range found throughout the TAM research stream.  Cronbachs of greater than .95 are highly 
suspicious, for this reason. 
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ease-of-use measures).  In short, the method itself is likely contributing to the pattern of 
responses rather than revealing the underlying, so-called “true” scores. 

Conversely, column 2 shows a randomized presentation of items where, judging from the range 
of the numbering, we can see that other TAM-unrelated items must also be appearing in the 
instrument. Thus, the reason for randomized presentation is to minimize mono-method or 
common methods bias [Cook and Campbell, 1979], which is a threat to both discriminant and 
convergent validity (and, as discussed below  also a threat to reliability).   

Although randomizing items may reduce methods bias, a careful reading of Campbell and Fiske 
[1959] suggests that common methods bias can even be a problem when steps are taken to 
separate construct-related items randomly.  It takes little stretching of the imagination to see how 
a respondent reading item 18 in Table 2 would naturally associate it with items 21 and 46 since 
the items, which utilize the same anchors, are still within the same instrument.  Again, the method 
itself may be a major factor in how participants respond rather than a careful, thoughtful response 
that reveals the true score.18 

A method of assessing common methods bias is a second order CFA in LISREL.  This method 
can be used to assess common methods bias even when only one data collection method is used 
so long as data are collected at different points in time, such as when the same instrument is 
administered to the same population at different times.  The second order CFA should be 
constrained so that there is one latent construct for each combination of method (or time when 
the questionnaire was administered) and trait (measures).  These measures compose the first 
order factors.  Second order factors are then created to represent each of the methods and each 
of the traits.  The CFA is then constrained so that each first order factor loads on two second 
order factors representing its method and its trait, respectively.  The correlations between the 
second order latent constructs representing methods and the second order latent constructs 
representing traits are set to zero, meaning that while methods and traits are allowed to correlate 
among themselves, they are not allowed to correlate with one another [Marsh and Hocevar, 
1988].  This technique is superior to MTMM because it does not assume a priori that the 
measurement model that the researcher specified is necessarily the most valid one [Marsh and 
Hocevar, 1988].  Applying this technique, researchers can assess the significance of common 
methods bias by simply collecting the data at several points in time and running a second order 
CFA.  Nevertheless, second order CFA is extremely rare in MIS research.   

Woszczynski and Whitman [2004] found that only 12 of 428 articles in the IS literature over the 
period 1996-2000 even mentioned common methods bias.  They list the means by which IS 
authors avoided this threat, particularly multiple methods of gathering independent and 
dependent variables, but the fact remains that few articles using one method test for the presence 
of this bias. 

In the final analysis, the best heuristic for dealing with common methods bias is to avoid it 
completely to begin with.  The use of maximally different methods for gathering data is a superior 
approach to testing for bias in data gathered with the same method [Campbell and Fiske, 1959].  
It is especially desirable to apply a different method for dependent measures than independent 
measures [Cook and Campbell, 1979].  Perceptual data for independent variables could be 
counterpointed with archival data for dependent variables, for example.  In this situation, there is 

                                                      
18 Methodologists proposed quantitative techniques for analyzing single methods bias such as posed in this 
case.  Avolio et al. [1991] applied WABA (within and between analysis) to determine whether methods 
variance exists when two or more constructs are measured through information from a single source 
(method). Bagozzi and Phillips [1982] and Bagozzi [1980] use SEM to determine the extent of common 
methods variance via a single source.  Clearly, though, the most logical and safest way to determine if 
methods bias is a problem is to have more than one method in order to be able to compare the results a la 
the techniques proposed by Podsakoff et al. [2003].   
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no possibility that the use of the self-report method for the independent variables could influence 
the archival data gathered independently for the dependent variables.   

Heuristics for Construct Validity  
It is obvious from our lengthy discussion of construct validity, that this scientific check is one of 
the most critical procedures a researcher can perform.  Without knowing that constructs are being 
properly measured, we can have no faith in the overall empirical analysis.  Many established 
techniques are available for asserting valid constructs, and many more are evolving.  What would 
seem to be best practice at the present time is to use one or more techniques for testing 
discriminant and convergent validity, including factorial validity.  Because these approaches are 
reasonably well understood, we would argue that establishing construct validity should be a 
mandatory research practice, in general.  In addition, as argued above, common methods bias 
can be avoided by gathering data for the independent variables and dependent variables from 
different sources, or, if a single method is used, to test it through SEM.  Testing for common 
methods bias is a highly recommended technique, therefore.  Nomological validity is likewise a 
highly recommended technique, to be thought of as supplemental to conventional construct 
validity approaches.   

PREDICTIVE VALIDITY 

Also known as “practical,” “criterion-related,” “postdiction,” or “concurrent validity,”19 predictive 
validity establishes the relationship between measures and constructs by demonstrating that a 
given set of measures posited for a particular construct correlate with or predict a given outcome 
variable.  The constructs are usually gathered through different techniques.  The purpose behind 
predictive validity is clearly pragmatic, although Bagozzi and Fornell [1982] argue that the 
conceptual meaning of a construct is partly attributable to its antecedents and consequences. 

Figure 5 illustrates the key elements in predictive validity.  Construct A or the independent 
variable, also known as the predictor variable, is thought to predict construct B or the dependent 
variable, also known as the criterion variable.  The goal is simply prediction.  It is not necessary to 
provide evidence of a theoretical connection between the variables.  In the case where the 
theoretical connection is recognized, predictive validity serves to reinforce the theory base 
[Szajna, 1994].  

The widespread use of GMAT scores to predict performance in graduate studies is a case in 
point in the academic setting.  Decision-makers implicitly believe that constructs about 
mathematical or verbal ability will lead to higher performance in management graduate school 
and use a given instrument like the GMAT for highly practical reasons.  Evidence that GMATs 
predict student performance well [Bottger and Yetton, 1982, Marks et al., 1981] suggests that the 
GMAT instrument demonstrates good predictive validity.  As discussed in Nunnally [1978], 
predictive validity differs from a simple test of a model or theory in that it does not require 
theoretical underpinnings. 

                                                      
19 Nunnally [1978] remarks that postdiction, concurrent, and predictive validity are essentially the same thing 
except that the variables are gathered at different points in time.  Campbell [1960] discusses the practical 
nature of this form of validity.  Rogers [1995] considers predictive and concurrent validities as subtypes of 
criterion-related validity. 
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Figure 5.  Pictorial Model of Predictive Validity 

 

Campbell [1960], Cronbach [1990], and Bagozzi [1980] all conceptualize predictive validity as 
separate and distinct from content and construct validity.  Other methodologists believe that it 
may be an aspect of construct validity in that successful predictions of links of constructs to 
variables outside a theoretical domain also validates, in a sense, the robustness of the constructs 
[Mumford and Stokes, 1992], as in the case of nomological validity.  Yet, in that predictive validity 
does not necessarily rely on theory in order to generate its predictions, it is clear that it does not 
have the strong scientific underpinnings that arise from basing formulations of constructs and 
linkages on law-like principles. Although not discussed in Straub [1989], predictive validity could 
be put to better use in IS research,20 especially in circumstances where it is desirable to show the 
applied value of our research [Cronbach and Meehl, 1955].   

Vignette #6: Example of Predictive Validity 

A good example of predictive validity can be found in Szajna  [1994] prediction of choice of a 
system through criterion TAM constructs.  The dependent variable, choice of system, served a 
pragmatic purpose.  In this study, perceived usefulness and perceived ease-of-use were 
measured at one point in time.  They were used to predict actual choice of a database 
management system to be used in an academic course at a later time.  By varying the 
dependent variable from the traditional theoretical outcome in the TAM literature, i.e., intention 
to use/system usage, to system choice, Szajna [1994] was able to validate both the exogenous
and endogenous constructs.  In her analysis, TAM constructs proved to be accurate predictors 
70% of the time, which, based on a z-score analysis, was highly significant over a chance 
prediction.  

Heuristics for Predictive Validity  
While the use of research constructs for prediction serves the practitioner community, it is 
generally not conceived of as being necessary for scientific authenticity.  For this reason, we 
categorize it as an optional practice. 

RELIABILITY 

While construct validity is an issue of measurement between constructs, reliability is an issue of 
measurement within a construct.  The concern is that instrument items selected for a given 
construct could be, taken together, error-prone operationalizations of that construct.  Figure 6 
shows that reliability of constructs A and C, being reflective constructs, is calculated based on the  

                                                      
20 Predictive validity was considered to be part of construct validity in Boudreau et al. [2001]. 
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Figure 6. Pictorial Model of Reliability 

extent to which the measures serparately correlate or move together.  The reliability of one 
construct is independent of and calculated separately from that of other constructs, as depicted in 
the separate boxes in Figure 6.   

Latent constructs that are formative may involve such different aspects of a construct that they do 
not correlate [Diamantopoulos and Winklhofer, 2001].  It is not clear, therefore, that reliability is a 
concept that applies well to formative constructs.  These aspects “form” the construct, but do not 
necessarily “reflect” it in correlated measures. 

As pointed out in Cronbach [1951], reliability is a statement about measurement accuracy, i.e., 
“the extent to which the respondent can answer the same questions or close approximations the 
same way each time” [Straub, 1989]. The philosophical underpinnings of reliability suggest that 
the researcher is attempting to find proximal measures of the “true scores” that perfectly describe 
the phenomenon.  The mechanism for representing the underlying reality is integral to all data 
and data gathering [Coombs, 1976].  

Six generally recognized techniques are used to assess reliability:  

1. internal consistency,  
2. split halves,  
3. test-retest,  
4. alternative or equivalent forms,  
5. inter-rater reliability, and 
6. unidimensional reliability. 

where techniques 2 through 4 are considered to be “traditional” methods and 1, 5, and 6 are more 
recently employed techniques. Assessed through statistical packages such as SPSS and SAS, 
composite reliability coefficients analogous to internal consistency are also available in SEM.  In 
addition, covariance-based SEM, such as LISREL, can be used to assess unidimensionality.   

Boudreau et al., [2001] assessed the extent to which reliability was considered by IS researchers 
when developing their instruments. They discovered that the majority, that is 63%, assessed 
reliability. Most of this work (79%) estimated reliability through the standard coefficient of internal 
consistency, i.e.,Cronbach's α.  Only in rare cases were other methods been used to verify the 
reliability of measures.  Specifically, 2% used test/retest, 2% used split halves, and 21% used 
inter-coder tests. Moreover, the use of more than one reliability method occurred in only 13% of 
the studies assessing reliability.  This state of affairs is regrettable because the use of additional 
methods to calculate reliability, or a combination of methods, would strengthen this component of 
instrument validation. The following subsections discuss the six types of reliability. 
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Internal Consistency 
Internal consistency typically measures a construct through a variety of items within the same 
instrumentation.  If the instrument in question is a questionnaire, items are varied in wording and 
positioning to elicit fresh participant responses.  Moreover, if the scores from each of these items 
correspond highly with each other, the construct can be said to demonstrate acceptable reliability.   

Reliability is the statistic most often used to evaluate internal consistency.  This statistic is 
sensitive to the number of items forming the scale, so that a large number of items, say ten or 
above, will often yield high alphas, even if some measures are error-prone and not highly related 
to the other measures, i.e., reliable.  Cronbach's α assumes that all items being considered for 
each construct are identically scored, as, for example, through Likert scales.  If this assumption is 
not met, the researcher may plug Spearman correlations into the K20 formulation21 or, more 
closely related to the likely values of a Cronbach's α, use reliability statistics generated by or 
calculated from SEM such as LISREL or PLS.  Alternatively, some software packages such as 
SPSS 10.0 make such adjustments automatically. 

What is ironic in assessing reliability is that high values (0.95 or greater) are more suspect than 
those in the middle alpha ranges.22  When respondents are subjected to similar, identical, or 
reversed items on the same instrument, it is possible that very high reliability values simply reflect 
the ability of the participants to recall previous responses, which suggests that they were not 
responding naturally to the intent of each question to elicit their underlying true score.  In short, 
the method itself became an artifact in the measurement.  This threat of common methods bias is 
discussed at greater length in Campbell and Fiske [1959].  

How can IS researchers fairly test their reliabilities and reduce the threat of common methods 
bias at the same time?  Internal consistency testing is most valid when the instrument items are 
randomized or, at least, distributed in such a manner that the respondent cannot, in effect, guess 
the underlying hypotheses [Cook and Campbell, 1979].  Assume for the moment that all nine 
items measuring a single construct are arranged in sequential order on the instrument.  In this 
scenario, it is extremely likely that the method itself (the side-by-side arrangement of the items) 
would determine the scores to a large extent and that a very high reliability statistic will result 
whether the item values truly represent the respondent's assessment or not.  A robust 
arrangement of the instrument, therefore, is to separate items so that common methods bias is 
minimized.   

 

Vignette #7: Example of Internal Consistency Reliability 

Nearly all IS researchers prefer internal consistency statistics for reliability testing.  In Grover 
et al.’s [1996] study of IS outsourcing, values for the major constructs ranged from .89 to .97.  
Using previously validated scales to measure media social presence, Straub [1994] used 
multiple items to examine the social presence of E-Mail and FAX as perceived by both 
American and Japanese knowledge workers.  Cronbach's αs were .83 and .84.  These 
values are acceptable, according to Nunally's rule of thumb, which allow values as low as .60 
for exploratory research and .70 for confirmatory research [Nunnally, 1967].23  

                                                      
21 The formula for coefficient α is: (k/k-1) (1- (Σ σi

2)/(σt
2), where k = number of parts/items in the scale, σi

2 = 
the variance of item i, and σt

2 = the total variance of the scale. 
22 Meehl [1967] makes a similar case for situations where the corroboration of social science propositions 
becomes weaker as precision gets better. 
23 Nunnally [1978, 1994] reassessed these guidelines in his subsequent articles, but his 1967 guidelines can 
be taken as reasonable if one allows more latitude for exploratory work.   
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Internal consistency testing is always subject to the charge of methods bias, but this technique at 
least reduces the impact of common methods bias on the true scores. For example, many 
researchers used Davis' TAM instrument without randomly varying the arrangement of the items 
composing each scale (Table 2, and discussion of discriminant validity).  Non-randomized 
ordering of questionnaire items could easily explain the high Cronbach's αs that are reported as 
well as other methods artifacts related to discriminant and convergent validity [Straub et al., 
1995].  

Traditional Tests for Reliability 
Straub [1989] did not discuss some traditional tests for reliability, including split-half, test-retest, 
and alternative forms [Cronbach, 1971, Parameswaran et al., 1979].  Although Parameswaran et 
al. [1979] criticize these traditional reliability tests for the assumptions in their theoretical 
underpinnings, IS researchers need to understand the basic approach in these techniques to be 
able to intelligently review manuscripts that choose to use these tests.  In some  specific cases 
these techniques continue to be useful in IS research, and IS researchers need to understand 
why these cases justify the use of these techniques. 

Split Half Approaches. A traditional form of reliability assessment is split half testing.  In this 
procedure the sample is divided into equal sub-samples and scores on the halves correlated.  
With these correlations a reliability coefficient can be obtained [Nunnally, 1978] by using the 
average correlation between items, as in all reliability estimating.  Nunnally [1978] points out that 
the main difficulty with this technique is that different results are obtained depending on how one 
splits the sample.  A random splitting will result in different correlations than an even-odd splitting, 
for example.  Hence, the ability of the instrumentation to reflect true scores is not clearly and 
unambiguously estimated by the method.  Moreover, if enough different splits are made, the 
results approximate Cronbach's coefficient alpha ([Nunnally, 1978] p. 233).  A special purpose is 
needed for using this technique, as in the case of Segars [1997], discussed later.  In general, its 
use is subsumed by internal consistency tests. 

McLean et al. [1996] measured the importance of above-average salaries to IS graduates as they 
progress through the early months of their IS careers.  As part of this study, they test the reliability 
of their Job Satisfaction scale through split-half reliability.  Scores ranged from .47 to .89, with an 
overall mean of .80.  Another part of their instrument was an Organizational Climate scale, which 
was tested via Cronbach αs ranging from .62 to .90. 

Test-Retest. Test-retest approaches to determining whether an instrument will produce the same 
scores from the subjects every time is a form of reliability testing that can be used effectively in 
certain circumstances [Cronbach, 1951, Nunnally, 1978, Nunnally and Bernstein, 1994, Peter, 
1979].  Test-retest involves administration of the instrument to the same sample group twice, the 
second administration being typically after a one or two week interval [Peter, 1979].  One 
assumption underlying this test is that if the instrument is reliable, the intervening time period will 
not result in widely different scores from the same subject and measurement error will be low.   

A good example of the use of test-retest is Hendrickson et al. [1993].  In this test of the reliability 
of TAM measures over time, the instrument was administered to 51 subjects using a spreadsheet 
package and 72 subjects using a database management package.  The same test was 
administered to the subjects after a three day period.  Reliability values were comparable, albeit 
slightly lower than Davis’ [1989].  What is clear in the case of this validation research is that 
reliability of the TAM instrument was well established before, but via the administration of a single 
instrument (i.e., internal consistency estimates).  Examining the stability of the scales over time, 
therefore, was a valuable validation exercise.   

Clearly, there are several inevitable threats in the use of this technique.  

• The test-retest threat [Cook and Campbell, 1979].  That is to say, the answers may 
be similar because a respondent simply recalls the previous answer and not because 
the second score necessarily verifies the accuracy of the first score.  In all likelihood, 
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this threat is no more or less problematic than the methods bias threat for internal 
consistency.  In general, the longer the time between administrations of the 
instrument, the less likely it is that the participant will remember the prior responses 
[Rogers, 1995], and, therefore, the lower is the test-retest threat [Hendrickson et al., 
1994].  

• Lengthening the time interval, however, raises another threat, that of an intervening 
event legitimately affecting the true score [Peter, 1979].  In such a case, it is not 
possible to distinguish between reliability and causality.  Peter [1979] discusses other 
threats that IS researchers need to be aware of. 

Alternative or Equivalent Forms  As discussed in Peter [1979] and Nunnally [1978], alternative 
forms involve comparisons between the scores for various constructs as represented by the 
instrument and scores in other “tests” or instruments.  For example, a sample group tested for 
computer literacy scores using one instrument can be compared to similar scores on a related 
instrument.  Alternative forms have the same problems as test-retest in that they are administered 
at different points in time.  Moreover, the reliabilities computed for different alternative tests could 
vary significantly. Which of these tests represents the better comparative test cannot be 
determined a posteriori.  Alternative forms have not been used recently in IS research.  Boudreau 
et al.’s [2001] sampling of journal articles within a recent three year period did not reveal a single 
example of this form of reliability testing.  The problem equivalent forms creates is obvious.  
There is little to go on with respect to best practice. 

The other difficulty with this approach is that its procedures are not completely distinguishable 
from discriminant validity tests, which, again, assume that measures show high construct validity 
when they are able to differentiate between sets of variables, some of which are measuring highly 
correlated concepts [Cronbach and Meehl, 1955].  Given these difficulties, this form of reliability 
should not be a first choice for IS researchers. 

Inter-Rater or Inter-Coder Reliability 
Often, in empirical research, collected data does not manifest itself in a natural quantitative form.  
A great deal of unstructured and semi-structured discourse in interview transcripts data falls into 
this category.  Even structured interview data, such as verbal responses to a scale provided to 
the interviewee, can be complicated by qualifications made by the respondent.  In such cases, 
researchers find it desirable to code the data so that they can analyze it and interpret its 
underlying meaning. 

Inter-rater reliability, in which several raters or judges code the same data, is of great interest, 
therefore, in both quantitative and qualitative research [Miles and Huberman, 1994]. Yet, in the 
context of this dual facility, several issues are unresolved.  One question is whether the terms 
reliability and validity even apply to qualitative work [Armstrong et al., 1997, Denzin and Lincoln, 
1994] or, if they are applicable, in which circumstances [Burrell and Morgan, 1979, Lacity and 
Janson, 1994].  The other major questions are whether the techniques produce accurate and 
reproducible results [Armstrong et al., 1997] or are suitable for all forms of data [Jones et al., 
1983, Perreault and Leigh, 1989].  Miles and Huberman [1994] suggest coders need to be trained 
with definitions of key constructs and a process for developing consistent coding.  Once properly 
coded, the data are then analyzed via several techniques. 

Cohen's coefficient Kappa is the most commonly used measure of inter-rater reliability.  
Pearson's or Spearman correlations (including average correlation, interclass correlation, and the 
Spearman-Brown formula) as well as percentage agreement are sometimes used for the case of  
two raters [Jones et al., 1983].24  Miles and Huberman’s [1994], Landis and Koch’s [1977], and 
Bowers and Courtright's recommendations [1984] for minimum inter-rater reliability are .70. 
                                                      
24 Data comparing two raters can be reorganized by systematically transferring the higher of the ratings to 
the same field or column.  Lacking this transformation, the reliabilities will be highly attenuated and 
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Vignette #8: Examples of Inter-Rater Reliability 

In Lim et al.’s [1997] study of computer system learning,  two independent coders scored tests 
based on explicit instructions.  These instructions described how to determine if a good 
explanation was provided by the respondent, and were thus fairly detailed.  A correlation of .84 
was assessed.  Before further statistical analysis was performed on the test scores, 
disagreements between the coders were reconciled. 

Another example is Pinsonneault and Heppel [1997/98], who created an instrument to 
measure anonymity in groupware research.  To create their scales, graduate students sorted 
items into categories believed to be the constructs of interest.  Level of agreement among 
raters was established via percentages and coefficient kappa.  Initially, the agreement score 
was 79% and the Kappa was .75, indicating good inter-respondent agreement. 

Using the more stringent measurement of Kappa designed by Umesh et al. [1989], Boudreau 
et al. [2001] classified articles according to their use or non-use of research validities.  They 
determined that the Kappa for their raters’ coding exceeded the benchmark .70 threshold.  
Percentages of agreement were in the 74% to 100% range. 

Unidimensional Reliability 
Unidimensionality is an important statistical test, but, alas, is perhaps the least understood, 
newest, and certainly the least applied. Unidimensionality is a property of a measurement item 
that states and examines that the item measures, that it reflects, only one latent construct. 
Unidimensionality is assumed a priori in many measurements of reliability, including Cronbach’s 
α.  Gefen [2003] extensively discusses this relationship.  

Techniques in covariance-based SEM can also help to determine the unidimensionality and the 
traditional reliability of a construct.  Unidimensionality means that each measurement item reflects 
one and only one latent variable (construct) [Anderson et al., 1987, Gefen et al., 2000, Segars, 
1997].  That is, it means that tests should not reveal that a measurement item significantly reflects 
more than the latent construct to which it is assigned. The terms frequently used to discuss this 
validity are: “first order factors,” “second order factors,” etc.  A first order factor is the most macro 
level conceptualization of a construct.  It is composed of more than one second order factors, 
which, together, would be reflective or formative of the first order construct [Gefen et al., 2000].    

Unidimensional reliability is a relatively new, highly sophisticated approach for validating 
reliability, although it was long recognized as a basic assumption upon which other measures of 
reliability rely.25  Unfortunately, prior to the advent of SEM and Item Response Theory [Hambleton 
et al., 1984], the measurement of unidimensionality was extremely laborious from a statistical 
standpoint. The rule for determining unidimensionality is that such constructs will not show 
“parallel correlational pattern[s]” ([Segars, 1997], p. 109) among measures within a set of 
measures (presumed to be making up the same construct) and among measures outside that set 

                                                                                                                                                              

inaccurate.  Consider, for example, a case where the raters always differed by only one value on a five point 
scale, about half of the time in one direction and about the other half of the time in the other direction.  The 
correlation between these raters using an untransformed dataset would be close to .00.  If the data is 
reorganized in the manner suggested, the correlation is 1.0, reflecting the fact that the raters were tracking 
each other closely (consistently only a one point calibration difference).  Calibration clearly remains an issue 
in the illustrative inter-rater dataset, but the reliability is certainly not as negligible as a .00 would indicate. 
25 It is unclear at this point as to whether unidimensionality is only a characteristic of reliability or whether it 
can also be or should be thought of as a form of construct validity.  It is likely that it can be used in either or 
both contexts.  What is probably more important is that IS researchers begin to work with this validation tool 
more frequently to gain a clearer picture of the internal structure of their measures and constructs. 
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(see also [Anderson et al., 1987]).  As discussed in Long [1983a, 1983b] and Jöreskog and 
Sörbom [1993, 1994], and Chin [1998b], fundamental capabilities of SEM allow researchers to 
test the relationships between instrument items (measures, indicators, or observed variables) and 
latent variables (constructs).  Researchers examine first order and second order models to 
determine if the posited structure of variables is unidimensional. 

Vignette #9: Examples of Unidimensional Reliability 

Segar's study [1997] of IT diffusion and IT infusion variables is an exemplar for how 
unidimensional reliability can be assessed.  After CFA analysis investigated the two factor- ten 
item model for unidimensionality and measurement fit, two of the ten items were dropped and 
unidimensionality established.  The resulting two factor model with 8 items was used to derive 
reliability statistics in two ways.  A split-half technique generated an alpha coefficient for both 
the IT diffusion and IT infusion scale items.  These values were acceptable at .91 and .87. 
Moreover, the average variance extracted by the items was .73 and .63, respectively, which 
was sufficiently above the .50 cutoff value mentioned above.26  

Sethi and King [1994] used CFA to determine that there were seven unidimensional constructs 
in their “Competitive Advantage Provided by an Information Technology Application” (CAPITA) 
research instrument.  Dropping two constructs that did not qualify, each of the seven factors 
was shown to be unidimensional.  

 

Readers are urged to examine the tutorial by Gefen [2003].  This paper presents an example and 
step-by-step walkthrough on the use of unidimensionality in LISREL and the threats it addresses. 
It includes real data that can be used to replicate the arguments on the necessity of performing 
unidimensionality analysis.  The tutorial includes a running example that shows how ignoring 
threats to unidimensionality can seriously affect conclusions drawn from the structural model.  
The tutorial also shows that these threats cannot be assessed with a PCA. Gefen [2003] used 
CFA to show the unidimensional nature of the Perceived Usefulness and Perceived Ease of Use 
constructs of TAM together with the SPIR (social presence/information richness) measures used 
by Gefen and Straub [1997]. 

Mono-Operation Bias 

Cook [1979] point out the threat to reliability (a threat which also holds for construct validity) that 
results from mono-operationationalization of constructs.  With such single item measures, we 
cannot be sure that we have captured the construct because we have no means to validate the 
metric.  It may be right or wrong or somewhere in between, but we have no standard against 
which to judge the researcher’s choice of item. 

Nevertheless, there are cases where the researcher has little choice but to use a single measure 
for certain constructs.  This may occur because of the intractability of the construct, the danger 
that respondents will become indifferent due to lengthy instrumentation, or a host of other 
legitimate reasons.  In such cases, the researchers need to make a convincing argument for their 
measure, and balance this off with value in other parts of the study.  In the long run, if there is a 
compelling logic to the theory and the posited constructs, measurement will be approached by 
other researchers.  While this position may seem at odds with validation as a primary and prior 

                                                      
26 The resulting two factor model with 8 items shows high fit values and also passes tests for both 
convergent and discriminant validity.  Thus, the concept of unidimensionality clearly applies to both reliability 
and to construct validity. 
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process in the research process, we realize that the guidelines offered here are a Weberian “ideal 
type” which are rarely seen in their entireity in practice.  They are not unobtainable, as we will 
later demonstrate, but most of our work falls short of attaining perfection or near perfection in 
validation. 

Heuristics for Reliability 
Reliability assures us that measures that should be related to each other within the same 
construct are, indeed, related to each other.  Without reliable measures, it is difficult to see how 
the data can be trusted, any more than instruments lacking construct validity can be trusted.  One 
form or another of reliability is mandatory for scientific veracity. 

If qualitative data is not being coded, then internal consistency measures (Cronbach’s αs or SEM 
internal consistency/composite statistics) should be used first in the development of instruments.  
Since other forms of reliability contain limitations, they may be applied in more mature research 
streams. 

Unidimensional validity is an important new approach in the IS researcher’s toolkit. Because its 
previous use by the field is limited, we suggest that it be classified as optional until we gain more 
experience with it and understand its capabilities better.  

MANIPULATION VALIDITY 

Manipulation validity (a.k.a. manipulation checks) is traditionally inserted into experimental 
procedures/tests to measure the extent to which treatments (IVs) are perceived by the subjects 
[Bagozzi, 1977].  As shown in Figure 7, manipulated constructs A and B, or treatments, are the  

 
Figure 7. Pictorial Model of  Manipulation Checks 

independent variables hypothesized to produce an outcome.  The manipulation validity is an assurance 
on the part of the researcher that the manipulations “took” in the subjects.  In the case of 
physiological treatments, like new drugs, little doubt exists,27 but considerable doubt is 
encountered in cases where researchers are manipulating the subjects’ perceptions, through 
experimental tasks or exercises. 

It needs to be understood that subjects must be aware of certain aspects of their manipulation, 
but not others.  Clearly, subjects being asked to respond to a scenario manipulating high level of 
sunk costs in IT investments, as in [Keil et al., 1995], must be cognizant of this level for the 

                                                      
27 Nevertheless, physiological researchers usually guard against the opposite effect.  Subjects who did not 
receive a treatment (control group) are supplemented by a group given a placebo so the control group can 
be compared to those who do not “perceive” that they had no drug and, and therefore, no effect. 

Manipulated
Construct

B

Construct 
C

Manipulated
Construct

A
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manipulation to create any impact.  But it would be highly undesirable if these same subjects 
were able to guess [Argyris, 1979] the underlying “project escalation” hypotheses of this 
experiment and respond accordingly.28  Manipulation validity is designed to ensure that subjects 
are, indeed, manipulated as intended. Therefore, it is a validity that can be examined empirically.   

Manipulation validity can be simple and straight-forward or complex.  One common form of check 
is a simple question or questionnaire item on the experimental test that asks the subjects directly 
if they experienced the manipulation.  Or, it can be assessed in a more sophisticated way, using 
ANOVA, discriminant analysis, or other techniques [Perdue and Summers, 1986].  

Manipulation validity is not assessed frequently enough in IS experimental settings.  Indeed, 
Boudreau et al. [2001] report that only 22% of the field and laboratory experiments in their sample 
assessed this type of validity. As to the particular means by which manipulation validity was 
assessed, their sample showed that techniques such as t-test, χ2, and ANOVA were deployed 
about twice as often as descriptive statistics such as counts, means, and percentages. 

 

Vignette #10: Examples of Manipulation Validity 

Keil et al. [1995] conducted manipulation validity in a straightforward way in their research. 
Their subjects responded true or false to whether or not they were given a choice of an 
alternative course of action, which was one of the treatments.  In Simon et al. [1996], two 
manipulation checks were employed to assess perceptions of and reactions to the training 
treatments.  The results of an ANOVA were that the three training treatments — (1) instruction, 
(2) exploration, and (3) behavior modeling  — showed significant differences between groups 
on perceptions of training, but not on reactions to training. 

Using a relatively more sophisticated technique, Gefen and Straub [1997] employed 
discriminant analysis to assess manipulation validity. Subjects were randomly assigned to one 
of five experimental groups.  The baseline group examined a common Web-site; the four 
treatment groups examined various additions to this baseline Web-site.  Students then 
answered twelve true/false manipulation check questions that tested their responsiveness to 
these variations of the Web-site.  The success of the manipulation was assessed using a 
Multiple Discriminant Analysis (MDA) to examine whether the students could be reclassified 
into their original treatment groups based on the manipulation check questions.  The MDA 
showed four significant canonical discriminant functions, as would be expected of five 
treatments groups, and correctly classified over two-thirds of the students.  This percent of 
successful manipulation exceeds the 50% rule of thumb guideline suggested by Jarvenpaa et 
al. [1985]. 

Heuristics for Manipulation Validity 
Manipulation validity is mandatory for nearly all types of experimentation.  Without these checks, 
the experimenters cannot be certain which subjects were exposed to the treatments and which 
were not.  When a subject is being treated with a physical substance, such as a drug, 
manipulation validity is not needed.  But in the social science research that characterizes a great 
deal of management research, subjects may not be paying attention or may be uninterested in 
the experimental treatment.  The manipulation validity is one way of attempting to purify the data 
collected by discriminating between those who truly received the treatment and those who did 
not.  Practice varies, but removing unmanipulated subjects from the pool of data will generally 
improve significance of effects, and, for this reason, this  heuristic is highly recommended.  It 
                                                      
28 Hypothesis-guessing is an experimental confound.  Careful experimental procedures insulating the 
subjects from the hypotheses are designed to protect against the problem [Orne, 1962, Orne, 1969]. 
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should be noted, however, that because unmanipulated subject responses presumably add 
unexplained variance, inclusion of these subjects in the dataset is a more robust testing of the 
hypotheses and some researchers may choose to retain them for this reason.29  The danger of 
allowing unmanipulated subject responses to remain in the dataset is Type II errors, that is, 
concluding that this is no effect when, in fact, there was one.  Removing unmanipulated 
responses helps to avoid Type II errors. 

STATISTICAL CONCLUSION VALIDITY 

Statistical conclusion validity assesses the mathematical relationships between variables, and 
makes inferences about whether this statistical formulation correctly expresses the true 
covariation [Cook and Campbell, 1979].  It deals with the quality of the statistical evidence of 
covariation, such as sources of error, the use of appropriate statistical tools, and bias. Type I and 
Type II errors are classic violations of statistical conclusion validity.  IS field has also been able to 
take advantage of new techniques developed in the last decade that assist in establishing 
statistical conclusion validity.  These techniques take different approaches to establishing 
whether, statistically, there is a “critical realism” ([Cook and Campbell, 1979], p. 29) in the 
relationship between variables or sets of variables.  These tools are known as structural equation 
modeling (SEM) techniques and they are sufficiently different from bivariate, nonparametric, and 
multivariate techniques to call for special treatment in this paper.   

The two types of SEM are covariance-based and PLS.  Covariance-based SEM examine the 
entire matrix of covariances (or correlations, depending on how the model is run) including 
covariances that are not specified in the model.  PLS, on the other hand, examines the proposed 
model alone, ignoring other covariance that is not explicitly stated in the model. Gefen et al. 
[2000] present a detailed discussion and comparison.  The effective use of SEM in IS research is 
the underlying issue. These SEM techniques are now widely used in the top IS journals [Gefen et 
al., 2000].  

Heuristics of Statistical Conclusion Validity 

Vignette #11: Examples of Statistical Conclusion Validity 

IS authors use statistical conclusion validity, specifically justifying the type of tool they use 
based on its inherent distribution assumptions and its ability to deal with small sample sizes. 
Indeed, it is difficult to see how much positivist, quantitative research could pass muster 
without it.  In the next two examples the researchers, applying SEM, explain why they chose 
one statistical tool over others based on its statistical properties and distribution assumptions. 
Sambamurthy and Chin [1994] chose PLS, explaining at length why it is more appropriate than 
LISREL for their specific data and their predictive rather than confirmatory approach. Taylor 
and Todd [1995] preferred LISREL for their analysis because of its ability to compare 
alternative models dealing with well established theories.  

 

Statistical conclusion validity is mentioned briefly here for the sake of completeness. This 
technique receives the single most attention in management research [Scandura and Williams, 

                                                      
29 The counter argument to pooling the manipulated and unmanipulated subject responses is, of course, that 
the error terms of the unmanipulated subjects are unknown.  Their responses to items cannot be assumed 
to be a random process and, therefore, they may just represent bad data that should be discarded.  
Contrariwise, eliminating subject responses lowers sample sizes, sometimes below the minimum of 20 per 
cell, commonly used as a heuristic, itself conservatively derived from minimums of 15 per cell for a student’s 
T test. 
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2000]. The simplest way to document the heuristics in this category is to refer the reader to Gefen 
et al. [2000], where tables contain a complete set of heuristics.   

III. GUIDELINES FOR RESEARCH PRACTICE 

Although it improved over the years, instrument validation still needs to make major steps forward 
for scientific rigor in the field. Boudreau et al. [2001] call for “further heuristics and guidelines for 
bringing even more rigor to the process of positivist, quantitative research” (p. 13). Based on such 
observations and interpretations of prior work, validity rules of thumb can be expressed.  These 
rules are essentially pragmatic measures indicating patterns of behavior that appear to be 
acceptable within the IS scientific community.  No recognized means verifies the truth of such 
heuristics, other than through tradition, philosophical disputation, and evaluation of best of breed 
practice. It is traditional, for example, for IS researchers to use at least a .10 alpha level (Type I 
error) in their studies.  Even in this case, it is more often than not the practice that .10 is 
associated with exploratory work whereas confirmatory work uses either a .05 or .01 alpha 
protection level.  The numbers mentioned here represent what the community is willing to accept 
as a level of risk in statistical conclusion validity.  If the IS community were suddenly willing to 
accept a 25% chance (.25) that the results being reported could be false, then a new alpha level 
would become the rule of thumb.  The choice of levels cannot be established by mathematical or 
other means [Nunnally, 1978, Nunnally and Bernstein, 1994]. 

The same logic applies to statistical power, correlation values and explained variance, and a host 
of other statistical concepts.  On the issue of statistical power, for instance, Cohen [1977] makes 
a case that .80 is reasonable for a medium effect size, given the history of values reported in the 
literature.  Thus, this community standard implies that researchers should be willing to accept a 
20% chance of false positives for medium effect sizes, and less so for large effect sizes.   

With respect to a rule of thumb for correlation coefficients, Cohen [1988] argues that since the 
overwhelming majority of social science studies report relationships that correlate significantly at 
.50 or below, then a large effect is approximately .50, a moderate effect is .30, and a small effect 
is .10.  Large effects, moreover, are likely so obvious as to be trivial whereas small effects are 
merely significant from a statistical, rather than practical point of view. Again, such heuristics are 
argumentative and could be challenged at any point by the scientific community.  

The range of correlations in the published TAM stream is from 20-60%, and the acceptability of 
the explanatory power of any of these models is solely dependent on the judgment of the 
reviewers.  Falk and Miller [1992] argue that a minimum of 10% explained variance is acceptable 
for scientific advancement. 

Rules of thumb are desirable because of their practicality. Researchers can use them as de facto 
standards of minimal practice and as a first approximation for how true their instrumentation is, in 
reality.  Any heuristic can be challenged by members of the community, and, with effective 
persuasion, a new rule of thumb then set.  The summary list of our heuristics, all subject to 
challenge by the IS community, is presented in Tables 3 through 6. 
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Table 3.  Mandatory Validities  

Validity 
Component 

Technique Heuristic Source  

Construct Validity  
 

 Discriminant 
validity  

 

MTMM 

 

Relatively low number of matrix violations; SEM 
estimates of error attributable to method. 

 

[Campbell and Fiske, 1959] 
[Bagozzi, 1980] 

 PCA Latent Root Criterion (eigenvalue) of or above 1, 
although using a Scree Tail Test criterion is also 
accepted, in which case factors are accepted 
until the eigenvalue plot shows that the unique 
variance is no longer greater than the common 
variance. 

Loadings of at least .40 (although some 
references suggest a higher cutoff); no cross-
loading of items above .40. 

Items that do not load properly may be dropped 
from the instrument [Churchill, 1979]. 

[Hair et al., 1998] 

 CFA as 
used in  
SEM 

GFI > .90, NFI > .90, AGFI > .80 (or AGFI > .90, 
in some citations) and insignificant χ2, combined 
with significant t-values for item loadings.   

[Hair et al., 1998] 
[Segars, 1997] 
[Gefen et al., 2000] 

 Convergent 
validity 

MTMM Significant homomethod, homotrait correlations.  

 

 

 

PCA Eigenvalues of 1; loadings of at least .40; items 
load on posited constructs; items that do not 
load properly are dropped. 

[Hair et al., 1998] 

 CFA as 
used in 
SEM 

GFI > .90, NFI > .90, AGFI > .80 (or AGFI > .90, 
in some citations) and preferably an insignificant 
χ2; item loading should be above .707 so that 
over half of the variance is captured by the latent 
construct;  also, the residuals (item variance that 
is not accounted for by the measurement model) 
should be below 2.56.   

[Hair et al., 1998] 
[Thompson et al., 1995] 

 
[Chin, 1998b] 
[Segars, 1997]  
[Gefen et al., 2000] 

 Factorial validity 

        

PCA See PCA above for discriminant and convergent 
validity. 

 

 CFA as 
used in 
SEM 

See CFA & SEM above for discriminant and 
convergent validity. 
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Table 4.  Mandatory Validities (Where Appropriate)  

Validity Component Technique Heuristic Source  

Reliability         

 Internal 
consistency 

 

 

Cronbach's α; 
correlations;  

SEM reliability 
coefficients  

 

Cronbach’s α should be above .60  for 
exploratory, .70 for confirmatory; in PLS, 
should be above .70; in LISREL, EQS, 
and AMOS, should also be above .70. 

 

[Nunnally, 1967] 
[Nunnally, 1978] 
[Nunnally and Bernstein, 
1994]  
[Peter, 1979] 
[Thompson et al., 1995] 
[Hair et al., 1998] 
[Gefen et al., 2000] 

 Inter-rater 
reliability 

 

Coefficient kappa; 
correlations; 
percentages; 

Coefficient Kappa > .70. [Landis and Koch, 1977]  
[Miles and Huberman, 
1994] 

Manipulation Validity 

 

 

Percentages; T-tests; 
discriminant analysis; 
ANOVA 

Although no clear thresholds exist, higher 
percentages are clearly better; tests of 
significance; subjects who are not 
successfully manipulated should 
(arguably) be withdrawn from the 
dataset. 

[Perdue and Summers, 
1986] 

 

Table 5.  Highly Recommended Validities 

Validity Component Technique Heuristic Source  

Content Validity 

 

Expert panels or 
judges 

High degree of consensus; judgmental 
except for content validity ratios 
computed using Lawsche. 

[Lawshe, 1975] 

Nomological validity 

 

Comparison with 
previous nomological 
networks; regression; 
correlations; SEM 

Comparisons with previous magnitude 
measures, e.g., path coefficients; also 
with previous variance explained. 

 

Common methods 
bias / Method Halo 

 

Collect data at more 
than one period; 
collect data using 
more than one 
method; separate 
data collection of IVs 
from DVs  

Run second order CFA to check for 
method bias. 

[Marsh and Hocevar, 
1988] 

[Cook and Campbell, 
1979] 

 

 

 

 

 

 

 

 



 412                          Communications of the Association for Information Systems (Volume 13, 2004)380-427             

 

Validation Guidelines for IS Positivist Research by D. Straub, M. Boudreau and D. Gefen 

 

Table 6.  Optional, but Recommended Validities 

Validity Component Technique Heuristic Source  

Predictive validity 

         

Z-scores; 
correlations; 
discriminant analysis; 
regression; SEM 

Explained variances in the .40 range or 
above are desirable. 

 

Reliability 

 Split half 

Same as internal 
consistency 

Cronbach's α>.60/.70 and < .95.  

 Test-retest Same as internal 
consistency 

Cronbach's α>.60/.70 and < .95.  

 Alternative forms Same as internal 
consistency 

Cronbach's α>.60/.70 and < .95.  

 Unidimensional 
reliability  

Model comparisons Model comparisons favor 
unidimensionality. 

[Segars, 1997] 
[Gefen et al., 2000] 
[Gefen, 2003] 

 

What our slow progress toward rigorously validated instruments suggests is that the guidelines 
for IS research practice may need to be strengthened as well as broadened to include validities 
discussed in this article.  The 1989 Straub guidelines will, therefore, be subsumed into 
“Guidelines for the Year 2004 and Beyond,” immediately below. 

GUIDELINES FOR 2004 AND BEYOND 

Two broadly stated guidelines emerge from the present study: research validities and innovation 
in instrumentation. Table 7 lists the research validities and indicates the recommendation for 
them. 

Table 7. Guidelines for Research Validities 

Validity Recommendation 
Content validity Highly recommended 
Construct validity Mandatory 
Predictive validity Optional 
Reliability (internal consistency) Mandatory (where appropriate) 
Reliability (split halves) Optional in mature research streams 
Reliability (alternative forms) Optional in mature research streams 
Inter-rater reliability Mandatory (where appropriate) 
Unidimensional Reliability Optional 
Manipulation validity for experiments Mandatory (where appropriate) 
Nomological validity Highly recommended 
Common methods bias Highly recommended 
Statistical conclusion validity Mandatory 
  

Instrumentation Recommendation 

Use of previously validated instruments Highly recommended 
Creation of newly validated instruments Highly recommended  
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Research Validities 
Gatekeepers at journals ⎯ both editors and reviewers ⎯  should require separate article sub-
headed sections for validation of instruments, data-gathering approaches, and/or manipulations, 
as relevant; and, at the very least, insist on the standards in Table 7 for validation.  Our logic, in 
brief, for the most common of these validities, follows. 

Content validity  

Highly recommended. Establishing content validity is a highly desirable practice, especially in the 
absence of strong theory and prior empirical practice specifying the range and nature of the 
measures. 

Construct validity  

Mandatory: Establishing construct validity (convergent and discriminant validity) is a necessary 
practice, with factorial validity being minimally required.  For mature research streams, 
convergent and discriminant validity established through MTMM is recommended, as is 
nomological validity and ruling out common methods bias. 

Predictive validity  

Optional: Establishing predictive validity is useful for mature research streams. 

Reliability  

Mandatory: Establishing reliability is a necessary practice, with Cronbach's α tests being 
recommended over other tests of reliability.  When LISREL or PLS are used, reliabilities 
generated by or calculated from these SEM techniques should replace (or at least augment) the 
Cronbach’s scores.  Internal consistency reliability should be the first generation test of an 
instrument; other types of reliability testing, such as test-retest should follow as the research 
stream matures.  Where appropriate, inter-rater reliability is mandatory. 

Unidimensional reliability 

Optional in spite of its growing importance:  At present, the technique is little known in IS 
research.  Over time it could become mandatory because all reliability measures, including 
Cronbach’s α, assume a priori that the measures are unidimensional. As IS researchers gain 
more experience with unidimensional reliability testing, this form will likely earn greater 
prominence. 

Manipulation validity for experiments  

Mandatory: Establishing manipulation validity is a necessary practice for determining the validity 
of treatments (independent variables) in experimentation.  For other aspects of instrumentation, 
experiments should be subject to the same validity standards as other research methods. 

Statistical conclusion validity  

Mandatory: Establishing statistical conclusion validity is essential for all quantitative, positivist 
research. 

Innovation in Instrumentation 
Use of previously validated instruments 

Highly recommended: For the sake of efficiency, researchers should use previously validated 
instruments wherever possible, being careful not to avoid previous validation controversies or to 
make significant alterations in validated instruments without revalidating instrument content, 
constructs, and reliability.   
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Creation of newly validated instruments  

Highly recommended: Researchers who are able to engage in the extra effort to create and 
validate instrumentation for established theoretical constructs (nomological validity) are testing 
the robustness of the constructs and theoretical links to method/measurement change (see 
Boudreau et al. [2001], for more detailed argumentation).  This practice, thus, represents a major 
contribution to scientific practice in the field. 

Laboratory and Field Experiments and Case Studies 
Laboratory and field experiments, as well as case studies, lag behind field studies with respect to 
most validation criteria [Boudreau et al., 2001].  This result is disheartening in that laboratory 
experiments are superb ways to test existing theory and new theoretical linkages. The field needs 
the rigor of internal validity that lab experiments bring to the overall mix of our research.  As to 
positivist case studies, they are interesting because they are more likely to provide better 
qualitative evidence that instruments are scientifically valid [Campbell, 1975].  One would hope 
that an analysis of the state of the art in IS validation in the next decade would reveal large scale 
improvements, no only among field studies but also among laboratory experiments, field 
experiments, and positivist case studies.  

Contingent Applicability of the Guidelines by Research Design  
Some would argue (and we would be receptive to this point of view) that there are situations in 
which the validities should be applied differentially.  Not all research designs are equal, after all. 

Where would these occur?  We invite the IS community to add to the table we offer below (Table 
8), but it needs to be kept in mind that this table is only an initial attempt to spell out some of the 
conditions where the guidelines may need to be adapted to particular research situations.  What 
is clear in the line of reasoning we pursued in this article is that the kind of highly theoretical, 
confirmatory work that most frequently appears in top ranked IS journals will require the rigor of 
full validation. The heuristics we proffer here are those that will lead to the requisite rigor that 
these journals should welcome. 

Many IS journals are also open to exploratory work, and it is possible to argue cogently that a 
research design that was probing into new territory, where the theories of the field or 
contributing/reference fields may not apply, calls for a different set of validities.  In Table 8, we 
suggest that content validity may still be applicable since the researchers are exploring new 
definitions of constructs and are implicitly ruling out some possible measures and ruling in others.  
Their definitional boundaries are of great interest.  Empirical tests are of even greater value. 

By the same token, exploratory work may not require the more exacting and comprehensive tests 
of construct validity.  Readers might expect to see factorial validity and Cronbach’s internal 
consistency reliability tests in this case. 

Exploratory work may not yet be testing the strength of relationships between constructs. 
Therefore, predictive validity or nomological validity are beyond what many readers would 
require. Another possible set of contingencies could be added for matching or fitting the research 
design (including choice of validities to stress) to the research question.  A seminal work that 
takes this point of view is Jenkins [1985].  It may be the case that certain research questions call 
for methodological approaches that are not covered in our philosophy.  We fully recognize that 
this lack could be an oversight in the current paper.  We once again encourage IS researchers to 
think along these lines and present alternative points of view. 
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Table 8. Contingencies for Where Validities Apply 

No. Positivist 
Design Contingency 

 
Description 

 
Validities Stressed 

1 Exploratory work Probing new areas that are not now well 
understood; these areas may not have 
strong theory bases from contributing or 
reference disciplines. 

Content validity; straight-
forward and initial factorial 
tests of construct validity 
and internal consistency 
reliability tests 

2 Intractable Domains  Working in areas of study that are 
intractable or extremely difficult to 
measure; the standard should be that 
the field is better off with these insights 
and weak measures than without the 
results of the study. 

Content validity; mono 
operations, but with 
explanations for the 
reasonableness of the 
measures  

3 Confirmatory research in 
well established research 
streams 

Confirming the relationships between 
constructs that have been found again 
and again in highly related streams. 

All validities are likely 
applicable, especially 
nomological validity 

4 Theoretical work Simply testing theory or proposing 
refinements to theory and then testing 
them; relationships between constructs 
are the central elements in this kind of 
work. 

All validities are likely 
applicable, especially 
nomological validity 

5 Non-theoretical work Examining the nature of a phenomenon 
through descriptive statistics primarily, 
or with highly exploratory hypothesis 
testing. 

Content validity;30 predictive 
validity 

6 Previously validated 
instrumentation 

Applying the validated instrumentation 
to a new phenomenon or, less 
commonly, in a replication. 

All validities are likely 
applicable, but in much less 
detail than would be called 
for if the instrumentation 
were new; variant forms of 
reliability other than internal 
consistency would be 
appropriate 

6 New instrumentation Inventing new measures and 
procedures in cases where the theory 
was not well advanced or where it was 
advanced, but the prior instrumentation 
is weak 

All validities are likely 
applicable, and in great 
detail; this is the heart of 
the demonstration of the 
usefulness of the new 
instrumentation 

  

IV. MODEL OF INSTRUMENT VALIDATION 

To demonstrate that these guidelines are by no means impossible or out-of-reach for many or 
even most IS researchers, a single example of how new instruments can be developed is offered 

                                                      
30 It should be noted that descriptive work can be valuable to researchers seeking to validate the measures 
they are using.   
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next.  Smith et al. [1996] validated their information privacy instrument through a judicious choice 
of most of the validation techniques we discussed.  Each of these techniques are described 
briefly, to show the extent of the validation undertaken. 

CONTENT VALIDITY   

First, four different groups were asked to assess the content of dimensions that the authors 
proposed for information privacy.   

Group 1: Three experts in the privacy area were given 72 preliminary questionnaire items.   

Group 2: A reduced set of 39 items were then evaluated by 15 faculty and doctoral students.  In 
order to compare responses, this group was split, with roughly one half receiving definitions of the 
sub-construct dimensions and the other, not.   

Group 3: Thirty-two remaining items were next evaluated by 15 corporate employees. 

Group 4: A focus group of 25 persons.  The final scale included 20 items.   

In that information privacy affects many groups, the use of judges from these different groups 
verified that the “content” of the items was likely not idiosyncratic or biased. 

PRETEST   

This resulting 20-item scale was further refined through administration to 704 bank, insurance, 
and credit card issuer employees.  Exploratory factor analysis and reliability tests found support 
for most of the posited sub-constructs.  Additional exploratory factor analysis with three revised 
versions of the instrument sampling information systems managers and graduate business 
students resulted in a 15-item instrument.  Four subscales remained: Collection (4 items), Errors 
(4 items), Unauthorized Secondary Use (4 items), and Improper Access (3 items). 

UNIDIMENSIONAL RELIABILITY   

Using samples described immediately above, the authors next attempted to determine whether 
the hypothesized model of four dimensions offered the best fit to the data.  Using the CFA 
capabilities of LISREL, four theoretically plausible alternative models (a unidimensional model, a 
three-dimensional model, a model with two main factors and three sub-factors, and the 
hypothesized four factor model) were compared.  LISREL statistics indicated that the four sub-
construct model was the best fit to the data. 

CONSTRUCT VALIDITY  

Both convergent and discriminant validity were assessed with a new sample of 147 graduate 
business students.  LISREL statistics were used to determine that the sub-constructs converged 
(viz.,  significant factor loadings), but were different enough from each other to clearly represent 
separate dimensions (discriminant validity).  Overall model fit statistics were all within acceptable 
limits.   

RELIABILITY   

Smith et al. assessed the extent to which the respondents were giving true scores by using both 
internal consistency measures (two forms of this were employed via the LISREL analysis) and 
test-retest.  The instrument proved to be reliable by generally accepted internal consistency 
standards.  The overall test-retest coefficient was .78.   
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NOMOLOGICAL VALIDITY   

To examine whether the constructs of information privacy could find support in a network of 
theoretical relationships, Smith et al. looked at the linkages between standard antecedents of 
concerns of information privacy and items in the refined instrument.  For this test, 77 business 
graduate students from two geographically dispersed U.S. universities completed the instrument, 
to which were added the questions measuring the exogenous variables.  Significant beta 
coefficients in a regression analysis indicated that the instrument demonstrated nomological 
validity.  Further tests of this validity were made through examining linkages to the personality 
characteristics of: (a) trust/distrust, (b) paranoia, and (c) social criticism.  For these tests, a new 
sample of undergraduate students was used. 

PREDICTIVE VALIDITY   

The practical test of the instrument was to determine whether its measures would correlate highly 
with criteria in previous public opinion surveys administered for or by Cambridge Reports and 
Equifax.  Three questions used on these surveys were included with the Smith et al. instrument, 
and the combined survey administered to 354 members of the Information Systems Audit and 
Control Association (ISACA).  Highly significant correlations were observed between an overall 
index of Smith et al. items and the previous survey items.   

EXTERNAL VALIDITY 

Because consistent results were found across sample groups as diverse as IS auditors, 
knowledge workers in banking, insurance and credit, and graduate and undergraduate business 
students, the authors conclude that the instrument will generalize well. 

V. CONCLUSION  

In conclusion, we wish to stress that validation guidelines are owned by communities of practice 
and should not be the provenance of methodological “experts” or people in positions of power.  
Moreover, our argumentation in this paper should not be viewed as in any sense “conclusive.”   

In fact, we very much welcome criticism of the logic we followed, the examples, empirical 
evidence, and authorities cited.  If there are reasons why the IS positivist community should not 
view internal consistency reliability as a “must do” for researchers, then we need to hear these 
objections.  Likewise for the other validities.  This article is offered in the spirit of initiating a 
debate on the critical issue of what “rigor” in IS research means. 

In that this research essay is and must be in the form of a philosophical disputation with support 
from the methodological literature, the heuristics presented here are clearly subject to debate.  
Notwithstanding their usefulness to guide research for the interim, the IS field should welcome an 
ongoing discussion of key methodological issues.31  It is clear that a wide variety of methodology 
specialists within the IS field are capable of articulating the principles that guide their practice.  To 
encourage this dialogue could, one might even argue “should”, be a worthy goal of IS journals.  
The quality of our science should be sine qua non, “without which nothing.”  

Other fields looked at their research strategies and extent of validation introspectively (e.g., 
[Scandura and Williams, 2000]). Much of what we believe, for example, resulted from a series of 
books and articles by psychologists.  These researchers, along with others, remind us that 
positivist science needs to be more than a series of anecdotes or highly biased observations.  It 
needs the rigor of careful and thoughtful data gathering and intellectual constructs that explain 
real world events.  Validating the quantitative, positivist approach that one takes so that other 
                                                      
31 See http://www.endnote.auckland.ac.nz/ for a bibliography developed entirely to methodology and 
research validities. This bibliography is a starting point for more work in methodology. 
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scientists test or extend one's work is a critical underpinning of the scientific endeavor.  Across-
the-board validation of our research ⎯ regardless of choice of methodology ⎯ could be our next 
community goal.  Heuristics and guidelines for bringing more rigor to the process of scientific 
investigation are offered in this paper. The gatekeepers of the field, as represented by the 
journals and conferences, need to raise the level of awareness of the entire community by 
insisting on the standards offered here or convincingly presented by others. 

Editor’s Note:  This article was fully peer reviewed.  It was received on February 27, 3002. It was with the 
authors 7 months for revisions. The article was published onApril 30, 2004. 
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GLOSSARY 

AGFI: Adjusted Goodness of Fit Index. Within covariance-based SEM, statistic measuring the fit 
(adjusted for degrees of freedom) of the combined measurement and structural model to the 
data.  

AMOS: A covariance-based SEM, developed by Dr. Arbuckle, Published by SmallWaters and 
marketed by SPSS as a statistically equivalent tool to LISREL. Details are available at 
http://www.spss.com/amos/ .  

ANOVA: Univariate analysis of variance. Statistical technique to determine, on the basis of one 
dependent measure, whether samples are from populations with equal means.  

AVE: Average Variance Extracted. Calculated as [(Σλi
2)/( (Σλi

2) + (Σ(1-λi
2)], the AVE measures 

the percent of variance captured by a construct by showing the ratio of the sum of the variance 
captured by the construct and measurement variance.  

CFA: Confirmatory Factor Analysis. A variant of factor analysis where the goal is to test specific 
theoretical expectations about the structure of a set of measures.  

Construct validity: One of a number of subtypes of validity that focuses on the extent to which a 
given test/instrumentation is an effective measure of a theoretical construct.  

Content validity: The degree to which items in an instrument reflect the content universe to 
which the instrument will be generalized. This validity is generally established through literature 
reviews and expert judges or panels.  

Cronbach’s α: Commonly used measure of reliability for a set of two or more construct 
indicators. Values range between 0 and 1.0, with higher values indicating higher reliability among 
the indicators.  

Dependent Variable (DV): Presumed effect of, or response to, a change in the independent 
variable(s).  

EQS: A covariance-based SEM developed by Dr. Bentler and sold by Multivariate Software, Inc. 
EQS provides researchers with the ability to perform a wide array of analyses, including linear 
regressions, CFA, path analysis, and population comparisons. Details are available at 
http://www.smallwaters.com/.  

Endogenous construct: Construct that is the dependent or outcome variable in at least one 
causal relationship. In terms of a path diagram, there are one or more arrows leading into the 
endogenous construct.  
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Exogenous construct: Construct that acts only as a predictor or "cause" for other constructs in 
the model. In terms of a path diagram, the exogenous constructs have only causal arrows leading 
out of them and are not predicted by any other constructs in the model.  

Factor analysis: A statistical approach that can be used to analyze interrelationships among a 
large number of variables and to explain these variables in terms of their common underlying 
dimensions (factors).  

Formative variables: Observed variables that “cause” the latent variable, i.e., represent different 
dimensions of it. 

GFI: Goodness of Fit Index. Within covariance-based SEM, statistic measuring the absolute fit 
(unadjusted for degrees of freedom) of the combined measurement and structural model to the 
data.  

Independent Variable (IV): Presumed cause of any change in a response or dependent 
variable(s).  

Latent variable or construct: Research construct that is not observable or measured directly, 
but is measured indirectly through observable variables that reflect or form the construct.  

Linear regression: A linear regression uses the method of least squares to determine the best 
equation describing a set of x and y data points.  

LISREL: A procedure for the analysis of LInear Structural RELations among one or more sets of 
variables and variates. It examines the covariance structures of the variables and variates 
included in the model under consideration. LISREL permits both confirmatory factory analysis and 
the analysis of path models with multiple sets of data in a simultaneous analysis.  

Loading (Factor Loading): Weighting which reflect the correlation between the original variables 
and derived factors. Squared factor loadings are the percent of variance in an observed item that 
is explained by its factor.  

Manipulation validity: A measure of the extent to which treatments have been perceived by the 
subjects of an experiment.   

Measurement model: Sub-model in structural equation modeling that (1) specifies the indicators 
for each construct, and (2) assesses the reliability of each construct for estimating the causal 
relationships.  

MTMM: Multitrait-multimethod matrices employ correlations representing all possible 
relationships between a set of constructs, each measured by the same set of methods. This 
matrix is one of many methods that can be used to evaluate construct validity by demonstrating 
both convergent and discriminant validity. 

NFI: Normed Fix Index. Within covariance-based SEM, statistic measuring the normed difference 
in χ2 between a single factor null model and a proposed multi-factor model.  

Observed indicator / variables: Observed value used as an indirect measure of a concept or 
latent variable that cannot be measured or observed directly.  

Parallel correlational patterns (see Unidimensionality): Additional correlations between 
measurement items that are not reflected in a factor analysis or in the measurement model. For 
example, if items A1, A2, A3 and A4 load together on the same factor in a factor analysis but, 
additionally, A1 and A2 are highly correlated to each other in another dimension that is not 
captured in the factor analysis. Confirmatory factor analysis in LISREL can detect such cases.  

PLS: Partial Least Squares. A second generation regression model that combines a factor 
analysis with linear regressions, making only minimal distribution assumptions.  
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PCA: Principal Components Analysis. Statistical procedure employed to resolve a set of 
correlated variables into a smaller group of uncorrelated or orthogonal factors. 

Q-sort: A modified rank-ordering procedure in which stimuli are placed in an order that is 
significant from the standpoint of a person operating under specified conditions. It results in the 
captured patterns of respondents to the stimulus presented. Those patterns can then be analyzed 
to discover groupings of response patterns, supporting effective inductive reasoning. 

Reflective variables: Observed variables that "reflect" the latent variable and as a representation 
of the latent variable should be unidimensional and correlated.  

Reliability: Extent to which a variable or set of variables is consistent in what it is intended to 
measure. If multiple measurements are taken, the reliable measures will all be very consistent in 
their values.  Reliable measures approach a true, but unknown “score” of a construct.  

R-square or R2: Coefficient of determination. Measure of the proportion of the variance of the 
dependent variable about its mean that is explained by the independent variable(s). R-square is 
derived from the F statistic. This statistic is usually employed in linear regression analysis and 
PLS.  

SEM: Structural Equation Modeling. Multivariate technique combining aspects of multiple 
regression (examining dependence relationships) and factor analysis (representing unmeasured 
concepts with multiple variables) to estimate a series of interrelated dependence relationships 
simultaneously.  

Statistical conclusion validity: Type of validity that addresses whether appropriate statistics 
were used in calculations that were performed to draw conclusions about the population of 
interest.  

Structural model: Set of one or more dependence relationships linking the model constructs. 
The structural model is most useful in representing the interrelationships of variables between 
dependence relationships.  

Unidimensionality: A fundamental attribute of measurement items, assumed a-priori by scale 
reliability statistics. Unidimensional items occur when the items reflect only one underlying trait or 
concept.  If a construct is unidimensional, a first order latent construct representing that variable 
will be superior to a set of second order constructs representing different aspects of a construct.  
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