
CE/CZ 3001: Lab Project

For the rest of the lab work after Lab-3 you are required to do a project. The
project consists of 3 parts. You are required to do coding and synthesis, and to
demonstrate each part of the project. Write a project report to briefly describe the
working of the design of each part. Report should also include the timing report
and the waveform generated by simulating the testbench of each part of the
project. For Part-3 you will be required to find the minimum execution time and
the reduction in CPI which you achieve for the given program.

Project Part-1: Modify the 4-stage pipelined processor of Lab-3 to include BEQ,
LW, and SW instructions and convert that to a 5-stage pipelined processor. (6
marks)

Project Part-2: Modify the processor designed in Part-1 of the project to include
jump register (jr), jump (J), and jump & link (jal) instructions. (5 marks)

Project Part-3: Each group of students will be given a program which gets slowed
due to pipeline stalls. You are required to modify the program to remove the
hazards so as to reduce the number of pipeline stalls. Finally, you will estimate the
reduction in the CPI and execution time which you achieve. (4 marks)

Submission date: 11th April 2016 to Hardware project’s lab before 5pm

Zero

result
ALU

16 32

WriteEn MemWrite MemtoReg

MemRead

DM

Addr

Write
Data

Read
Data M

U
X

0

1

I [15 -0]

Read
Addr

I [31 - 0]

I [25-21]

I [20-16]

I [31-26]

6

5

5

32

32 rs

rt

IM
Imm/shamt
+ funtion

32

32

Sign
extend

M
U
X

0

1

ALUSrc

1

pr
og

ra
m

 c
ou

nt
er

add

M
U
X

0

1

Branch

3

32-bit instruction word for the R- and I-type instruction

PCSrc

I [15-11]
5 rd

ALUop

Project Part-1: Modify the processor of Lab-3 to include BEQ, LW, and SW instructions. You need to include the (i) Data Memory
(DM) of size 64 KB (word size = 32bits) which can be implemented in the same way as Instruction Memory (IM), and (ii) the branch
implementation circuit. The components and connections to be used in this part are shown in red. Take note of control signals to
include BEQ, LW, and SW. Modify the control unit accordingly. CONTINUED IN THE NEXT PAGE…

6-bit 5-bit 5-bit 5-bit 11-bit
 opcode rs rt rd Shamt+function

res
add

RF

RAddr1

RAddr2

WAddr
WData

RData2

RData1

load word: lw $rt, imm ($rs), meaning : rt Mem[imm + $ rs]
store word: sw $rt, imm ($rs), meaning : Mem[imm + $ rs] rt
branch on equal: beq $rs, $rt, imm, meaning: PC nPC+imm, if $rs = $rt

control
unit

control
signals

nPC=PC+1

M
U
X

0

1

RegDst

5

6-bit 5-bit 5-bit 16-bit
 opcode rs rt Immediate

Zero

result
ALU

MemWrite MemtoReg

MemRead

DM

Addr

Write
Data

Read
Data M

U
X

0

1
Read
Addr

I [31 - 0]

IM Sign
extend

M
U
X

0

1

ALUSrc

1

pr
og

ra
m

 c
ou

nt
er

add

res

add

M
U
X

0

1

Branch
PCSrc

ALUop

Convert the 4-stage pipelined processor to 5-stage pipelined processor. The pipeline registers are shown in the figure below.
Note the 3 pipeline registers in the datapath at the ID/EXE, EXE/MEM, and MEM/WB interfaces. Note that IM and DM has an
inherent delay of one clock cycle in producing its output as memory is a clocked devise. Control signals are generated in the
decode stage and therefore delayed by the number of clock cycles depending on the pipeline stage in which they are used.

denotes pipeline register

RF

RAddr1

RAddr2

WAddr

WData

RData1

RData2

WriteEn

control
unit

control
signals

M
U
X

0

1

RegDst

rs
rt

rd

imm

Each

denotes delayed by 3 pipeline registers

Fetch Decode Execute Memory Write back

Zero

result
ALU

16 32

MemWrite MemtoReg

MemRead

DM

Addr

Write
Data

Read
Data M

U
X

0

1
Read
Addr

I [32 - 0]

I [31-26]

6

5

5

32

32

IM

32

32

Sign
extend

M
U
X

0

1

ALUSrc

1

pr
og

ra
m

 c
ou

nt
er

add

res
add

M
U
X

0

1

Branch

3

PCSrc

ALUop

Project Part-2: Modify the processor designed in Part-1 of the project to include jump register (jr), jump (J), and jump and link
(jal) instructions. You need to modify the control unit to generate the control signals for the implementation of new instructions.
The location of pipeline registers are shown in the figure in the next page. Jump register instruction (jr rs) is an R-type instruction
where rt=rd=0. ‘Jump’ and ‘Jump & link’ are J-type instructions.

6 bits

26 bits

 opcode offset

::

M
U
X

0

1

M
U
X

0

1 PC+1

M U X

0 1

M
U
X 1 31

jal

jr

jump

32-bit instruction word: J-type

WriteEn

RF

RAddr1

RAddr2

WAddr
WData

RData2

RData1

I [15 -0]

I [25-21]

I [20-16]

rs

rt

imm

I [15-11]
rd

jal

26

nPC=PC+1

6

nPC [31-26] :: I[25-0]

control
unit

control
signals

0

M
U
X

0

1

RegDst

Register 31 is $ra.

Zero

result
ALU

MemWrite MemtoReg

MemRead

DM

Addr

Write
Data

Read
Data M

U
X

0

1
Read
Addr

I [31 - 0]

IM

Sign
extend

M
U
X

0

1

ALUSrc

1

pr
og

ra
m

 c
ou

nt
er

add

res

add

M
U
X

0

1

Branch
PCSrc

ALUop ::

M
U
X

0

1

M
U
X

0

1 PC+1

M U X

0 1

M
U
X

0

1 31

jal

jr

jump

Note that pipelining is not changed due to inclusion of jump register (jr), jump (J), and jump and link (jal) instructions, since
all these instructions get executed in the first pipeline stage.

WriteEn

RF

RAddr1

RAddr2

WAddr

WData

RData2

RData1

jal

6

26

nPC=PC+1
control

unit
control
signals

nPC [31-26] :: I[25-0]

M
U
X

0

1

RegDst

Fetch Decode Execute Memory Write back

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5

