1. Find the derivative.

$$
\begin{aligned}
& y=(5 x+11)^{3} \\
& \frac{d y}{d x}=\square
\end{aligned}
$$

2. Find the derivative.

$$
\begin{aligned}
& y=\left(4 x^{3}+7\right)^{3 / 2} \\
& \frac{d y}{d x}=\square
\end{aligned}
$$

3. Find $\frac{d y}{d x}$ for $y=x\left(5 x^{2}+3\right)^{1 / 2}$.

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\square
$$

4. Differentiate the given function.
$y=\left(\frac{x-1}{x-7}\right)^{3}$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\square$
5. The displacement s (in cm) of a linkage joint of a robot is given by $s=\left(4 t-t^{2}\right)^{2 / 3}$, where t is the time (in s). Find the velocity of the joint for $\mathrm{t}=2.75 \mathrm{~s}$.

The velocity is $\square \mathrm{cm} / \mathrm{s}$.
(Round to two decimal places as needed.)
6. Find all the higher derivatives of the following function.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=4 \mathrm{x}^{3}-5 \mathrm{x}^{4} \\
& \mathrm{f}^{\prime}(\mathrm{x})=\square \\
& \mathrm{f}^{\prime \prime}(\mathrm{x})=\square \\
& \mathrm{f}^{\prime \prime \prime}(\mathrm{x})=\square \\
& \mathrm{f}^{(4)}(\mathrm{x})=\square \\
& \mathrm{f}^{(5)}(\mathrm{x})=\square
\end{aligned}
$$

Will all higher derivatives evaluate to zero?
\bigcirc Yes

- No

7. Find $f^{\prime \prime}(x)$.

$$
\begin{aligned}
& f(x)=\left(x^{2}+9\right)^{7} \\
& f^{\prime \prime}(\mathrm{x})=\square
\end{aligned}
$$

8.

Find the second derivative of the given function.

$$
f(R)=\frac{5-6 R}{5+6 R}
$$

$\mathrm{f}^{\prime \prime}(\mathrm{R})=\square$
\square
9. Evaluate the second derivative of $f(x)=\sqrt{x^{2}+27}$ for $x=3$.

Select the correct choice below and fill in any answer boxes in your choice.
\bigcirc A. $f^{\prime \prime}(3)=\square$ (Type an integer or a simplified fraction.)
B. The solution is undefined.
10. If the population of a city is $P=9000\left(1+0.08 t+0.008 t^{2}\right)$, where t is in years from 2000, what is the acceleration in the size of the population?

$$
\frac{\mathrm{d}^{2} \mathrm{P}}{\mathrm{dt}^{2}}=\square
$$

11. A bullet is fired vertically upward in a controlled test environment. Its distance s (in ft) above the ground is given by $s=2950 t-21.9 t^{2}$, where t is the time (in s). Find the acceleration of the bullet.
\square feet per second squared
(Type an integer or a decimal.)
12. The voltage V induced in an inductor in an electric circuit is given by the equation below where L is the inductance (in H). Find the expression for the voltage induced in a $1.66-\mathrm{H}$ inductor if $q=\sqrt{2 t+5}-5$.

$$
\mathrm{V}=\mathrm{L} \frac{\mathrm{~d}^{2} \mathrm{q}}{\mathrm{dt}^{2}}
$$

$\mathrm{V}=\square$

1. Differentiate.

$$
\begin{aligned}
& \quad y=3 x^{3}-13 x^{2}+16 x+4 \\
& \frac{d y}{d x}=\square
\end{aligned}
$$

2. Find the derivative of the given function.

$$
y=\frac{1}{14} x^{14}+\frac{1}{9} x^{9}
$$

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\square
$$

3. Evaluate the derivative of the following function at the given point. Check your result using the derivative evaluation of a graphing calculator.

$$
y=6 x^{3}+3 x-2 ;(-1,-11)
$$

The derivative of y at $(-1,-11)$ is \square (Type an integer or a decimal.)
4. Let s represents the displacement, and let t represents the time for an object moving with rectilinear motion, according to the given function. Find the instantaneous velocity for the given time.

$$
s=50+420 t-60 t^{2} ; t=3.5
$$

The instantaneous velocity is \square. (Simplify your answer.)
5. The electric power P (in W) as a function of the current i (in A) in a certain circuit is given by $P=16 i^{2}+60 i$. Find the instantaneous rate of change of P with respect to i for $i=1.25 \mathrm{~A}$.

The instantaneous rate of change of P is \square W/A for $\mathrm{i}=1.25$.
(Simplify your answer.)
6. Find the derivative of the function. Do not find the product before finding the derivative.

$$
y=\left(7 x^{2}-x+2\right)\left(4-x^{5}\right)
$$

Choose the correct answer below.A. $y^{\prime}=\left(7 x^{2}-x+2\right)\left(5 x^{4}\right)+\left(4-x^{5}\right)(14 x-1)$$y^{\prime}=\left(-5 x^{4}\right)(14 x-1)+\left(7 x^{2}-x+2\right)\left(4-x^{5}\right)$$y^{\prime}=\left(7 x^{2}-x+2\right)\left(-5 x^{4}\right)+\left(4-x^{5}\right)(14 x-1)$
OD. $y^{\prime}=\left(4-x^{5}\right)\left(-5 x^{4}\right)+(14 x-1)\left(7 x^{2}-x+2\right)$
7. Evaluate the derivative of the given function for the given value of x.

$$
y=\frac{3 x-6}{4 x+9}, x=1
$$

$$
\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{x=1}=\square
$$

(Type an integer or a simplified fraction.)
8. If a constant current of 4 A passes through the current divider parallel resistors shown in the figure to the right, the current i is given by $\mathrm{i}=\frac{12 \mathrm{R}}{8 \mathrm{R}+15}$, where R is a variable resistor. Find $\frac{\mathrm{di}}{\mathrm{dR}}$.

$$
\frac{\mathrm{di}}{\mathrm{dR}}=\square
$$

9. A computer, using data from a refrigeration plant, estimated that in the event of a power failure the temperature C (in ${ }^{\circ} \mathrm{C}$) in the freezers would be given by $\mathrm{C}=\frac{3 \mathrm{t}}{0.05 \mathrm{t}+3}-35$, where t is the number of hours after the power failure. Find the time rate of change of temperature after 4.0 h .

The time rate of change after 4.0 h is $\square^{\circ} \mathrm{C} / \mathrm{h}$.
(Round to one decimal place as needed.)
10. A certain physical property is given by the formula below. Find the derivative of P with respect to r , assuming that the other quantities remain constant.

$$
\begin{aligned}
\mathrm{P} & =\frac{\mathrm{B}^{3} \mathrm{r}}{9 \mathrm{R}^{2}+6 \mathrm{Rr}+\mathrm{r}^{2}} \\
\frac{\mathrm{dP}}{\mathrm{dr}} & =\square
\end{aligned}
$$

11. Using the definition, calculate the derivative of the function. Then find the values of the derivative as specified.

$$
\begin{aligned}
& \mathrm{g}(\mathrm{t})=\frac{6}{\mathrm{t}^{4}} ; \mathrm{g}^{\prime}(-3), \mathrm{g}^{\prime}(3), \mathrm{g}^{\prime}(\sqrt{3}) \\
& \mathrm{g}^{\prime}(\mathrm{t})=\square \\
& \mathrm{g}^{\prime}(-3)=\square \\
& \mathrm{g}^{\prime}(3)=\square \\
& \mathrm{g}^{\prime}(\sqrt{3})=\square
\end{aligned}
$$

12. Find the error in the following work.

$$
\begin{aligned}
\mathrm{D}_{\mathrm{x}}\left(\frac{2 \mathrm{x}+5}{\mathrm{x}^{2}-1}\right) & =\frac{(2 \mathrm{x}+5)(2 \mathrm{x})-\left(\mathrm{x}^{2}-1\right) 2}{\left(\mathrm{x}^{2}-1\right)^{2}} \\
& =\frac{4 x^{2}+10 \mathrm{x}-2 \mathrm{x}^{2}+2}{\left(\mathrm{x}^{2}-1\right)^{2}} \\
& =\frac{2 x^{2}+10 \mathrm{x}+2}{\left(\mathrm{x}^{2}-1\right)^{2}}
\end{aligned}
$$

Choose the correct answer below.

OA. In all three steps, the denominator should be $(2 x+5)^{2}$.
OB. In the last step, the numerator should be $2 x^{2}-10 x+2$.
Oc. In the first step, the numerator should be $\left(x^{2}-1\right)(2 x+5)-(2 x) 2$.
OD. In the first step, the numerator should be $\left(x^{2}-1\right) 2-(2 x+5)(2 x)$.

1. Find the slope of a line tangent to the curve $y=4 x^{5}+5 x^{3}$ at $x=1$. Use the tangent feature of a graphing calculator to display the curve and the tangent line.

$$
\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{x}=1}=\square
$$

Use the tangent feature of a graphing calculator to display the curve and the tangent line at $x=1$. Select the correct plot below. All graph windows are [$-2.5,2 \cdot 5$] by $[-20,20]$.
OA.
B.

○c.

2.

The resistance R (in $\boldsymbol{\Omega}$) of a certain wire as a function of the temperature T (in ${ }^{\circ} \mathrm{C}$) is given by $R=15.0+0.550 \mathrm{~T}+0.0625 \mathrm{~T}^{2}$. Find the instantaneous rate of change of R with respect to T when $\mathrm{T}=108^{\circ} \mathrm{C}$.

The instantaneous rate of change of R with respect to T when $\mathrm{T}=108^{\circ} \mathrm{C}$ is \square $\Omega /{ }^{\circ} \mathrm{C}$. (Type an integer or a decimal rounded to the nearest tenth as needed.)
3. Find the derivative of the function. Do not find the product before finding the derivative.

$$
y=\left(3 x^{4}-x+2\right)\left(5-x^{5}\right)
$$

Choose the correct answer below.$y^{\prime}=\left(-5 x^{4}\right)\left(12 x^{3}-1\right)+\left(3 x^{4}-x+2\right)\left(5-x^{5}\right)$B. $y^{\prime}=\left(3 x^{4}-x+2\right)\left(-5 x^{4}\right)+\left(5-x^{5}\right)\left(12 x^{3}-1\right)$
C. $y^{\prime}=\left(5-x^{5}\right)\left(-5 x^{4}\right)+\left(12 x^{3}-1\right)\left(3 x^{4}-x+2\right)$
D. $y^{\prime}=\left(3 x^{4}-x+2\right)\left(5 x^{4}\right)+\left(5-x^{5}\right)\left(12 x^{3}-1\right)$
4. Evaluate the derivative of the given function for the given value of n. Check your results using the derivative evaluation feature of a graphing calculator.

$$
S=\frac{n^{3}-8 n+7}{3 n-n^{4}}, n=-1
$$

$S^{\prime}(-1)=\square$
(Type an integer or decimal rounded to the nearest thousandth as needed.)
5. A certain physical property is given by the formula below. Find the derivative of P with respect to r, assuming that the other quantities remain constant.

$$
P=\frac{D^{4} r}{R^{2}+2 R r+r^{2}}
$$

$$
\frac{\mathrm{dP}}{\mathrm{dr}}=\square
$$

6. Differentiate the given function.

$$
u=v^{2} \sqrt{2 v-7}
$$

$\frac{\mathrm{du}}{\mathrm{dv}}=$ \square
7. Differentiate the given function.

$$
y=\left(\frac{x+6}{x-5}\right)^{6}
$$

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\square
$$

8. Evaluate the second derivative of the given function for the given value of x .
$y=3 x^{\frac{2}{3}}-\frac{4}{x}, x=-1$
Evaluate the second derivative at $\mathrm{x}=-1$.
$y^{\prime \prime}(-1)=\square$ (Type an integer or a simplified fraction.)
9. The deflection y (in m) of a $5.00-\mathrm{m}$ beam as a function of the distance (in m) from one end is $y=0.0008\left(9 x^{5}-75 x^{2}\right)$. Find the value of $\frac{d^{2} y}{d x^{2}}$ (the rate of change at which the slope of the beam changes), where $x=4.00$.
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\square$ (Type an integer or a decimal.)
10. The total solar radiation H (in $\mathrm{W} / \mathrm{m}^{2}$) on a particular surface during an average clear day in one U.S. city is given by $\mathrm{H}=\frac{7,000}{\mathrm{t}^{2}+10}$, where t is the number of hours from noon. Find a general expression which can be used to determine how fast the rate of change of solar radiation on the surface is changing at any given time (ie find $\mathrm{d}^{2} \mathrm{H} / \mathrm{dt}^{2}$).
A. $\frac{14,000\left(2 \mathrm{t}^{2}-5\right)}{\left(\mathrm{t}^{2}+10\right)^{3}}$
B. $\frac{14,000\left(3 \mathrm{t}^{2}-10\right)}{\left(\mathrm{t}^{2}+10\right)^{3}}$
c. $\frac{14,000\left(-t^{2}+2 t-10\right)}{\left(t^{2}+10\right)^{3}}$
OD. $\frac{14,000\left(\mathrm{t}^{2}-10\right)}{\left(\mathrm{t}^{2}+10\right)^{4}}$
