

Office of Continuing and Distance Education College of Engineering

301-A Engr. Unit C University Park, PA 16801 Phone: (814) 865-7643 Fax: (814) 865-3969 www.engr.psu.edu/cde

Office of Continuing & Distance Education
College of Engineering
The Pennsylvania State University
301-A Engineering Unit C
University Park, PA 16802
(814) 865-7643

You are receiving this exam for a student enrolled in EE 211/212 at Penn State University.

PLEASE NOTE:

The student has a maximum of 1 1/2 Hours (90 Minutes) to complete the exam. The examination is closed book/notes. Calculators are permitted.

The use of any Cell Phone or electronic device during this exam is prohibited.

Proctor: Please complete the information below and return this form with the Exam.

Student Name (Please Print)

Proctor Name (Please Print)

Proctor Signature

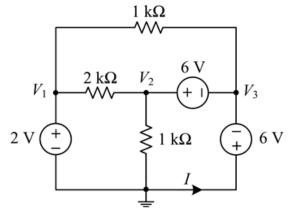
Date: _____

Start Time: _____
End Time: _____
End Time: _____
If you have an administration question, please contact Alex Zimmerman at the above number or by email at alz@engr.psu.edu

Thank you for agreeing to be a proctor.

Alex Zimmerman

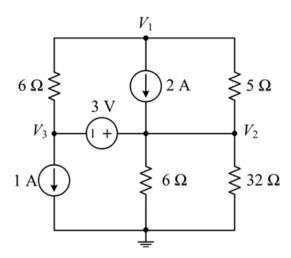
Alex Zimmerman


College of Engineering

Circle or check off the correct answers in this exam.

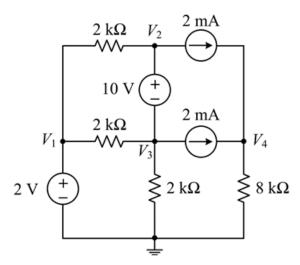
Name:			

Problem 1


1.

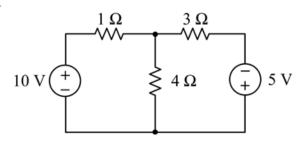
Using nodal analysis, solve for the current I.

- O A) −9 mA
- B) 9 mA
- c) -12 mA
- O D) 0 mA
- E) 12 mA


2.

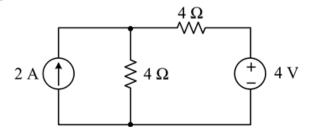
The supernode used to solve this circuit is located between which two nodes?

- OA) V3 and Ground
- \bigcirc B) V_1 and V_3
- \bigcirc c) V_2 and V_3
- \bigcirc D) V_1 and V_2
- \bigcirc E) V_2 and Ground


3.

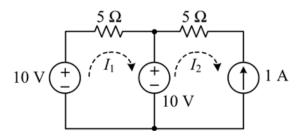
Solve for the voltages V_2 and V_3 in the above circuit.

- \bigcirc A) $V_2 = 4.33 \text{ V}$ and $V_3 = -5.67 \text{ V}$
- \bigcirc B) $V_2 = 7.33 \text{ V}$ and $V_3 = -2.67 \text{ V}$
- \bigcirc c) $V_2 = 5.33 \text{ V}$ and $V_3 = -4.67 \text{ V}$
- \bigcirc D) $V_2 = 15.67 \text{ V}$ and $V_3 = 5.57 \text{ V}$
- \bigcirc E) $V_2 = 14.67 \text{ V}$ and $V_3 = 4.67 \text{ V}$


4.

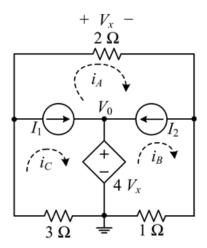
Solve for the voltage drop across the 4 ohm resistor.

- ○a) 3.75 V
- Ов) 7.5 V
- Oc) 5.94 V
- Op) 5.26 V
- ○E) 0 V


5.

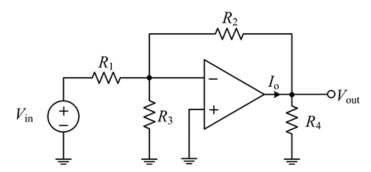
Find the power supplied by the 2A source.

- A) -12 W
- B) -2 W
- Oc) 18 W
- D) 12 W
- E) 2 W


6.

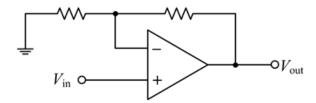
Solve for the currents I_1 and I_2 in the above circuit.

- \bigcirc A) $I_1 = -2$ A and $I_2 = 1$ A
- \bigcirc B) $I_1 = 0.5 \text{ A} \text{ and } I_2 = -1 \text{ A}$
- \bigcirc c) $I_1 = -2$ A and $I_2 = -1$ A
- \bigcirc D) $I_1 = 0$ A and $I_2 = 1$ A
- \bigcirc E) $I_1 = 0$ A and $I_2 = -1$ A


7.

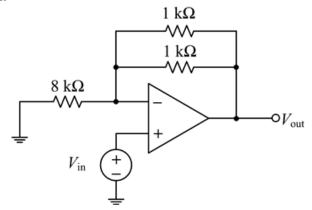
Which of the following answers describes the supermesh equation for the circuit shown above?

- \bigcirc A) $2i_{A} i_{B} 3i_{C} = 0$
- \bigcirc B) $2i_{A} + i_{B} + i_{C} = 0$
- \bigcirc c) $-2i_{A} + i_{B} 3i_{C} = 0$
- \bigcirc D) $i_{A} + i_{B} + 3i_{C} = 0$
- \bigcirc E) $2i_A + i_B + 3i_C = 0$


8.

Which resistor(s) affect(s) the gain Vout/Vin?

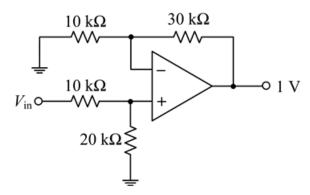
- \bigcirc A) R_4
- \bigcirc B) R_3
- \bigcirc c) R_1 and R_2
- \bigcirc D) R_1 , R_2 , and R_3
- \bigcirc E) R_1


9.

Which answer best describes the function of the above circuit?

- Oa) Inverting amplifier
- OB) Unity-gain buffer
- Oc) Difference amplifier
- O D) Inverting summer
- OE) Noninverting amplifier

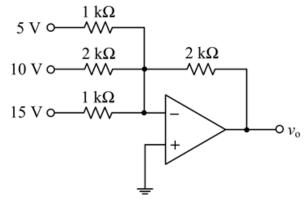
10.



Solve for the gain, $V_{\text{out}}/V_{\text{in}}$, of the circuit above.

Assume that the op amp is ideal and is operating in its linear region.

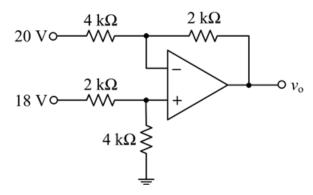
- O A) 0.125 V/V
- O B) 1.0625 V/V
- Oc) 1.125 V/V
- Op) 1 V/V
- OE) 0.0625 V/V


11.

Which of the following input voltage values produce 1V at the op-amp output? Assume that the op-amp is ideal and is operating in its linear region.

- a) 0.75 V
- B) 0.6 V
- Oc) 1 V
- \bigcirc D) $0~\mathrm{V}$
- E) 0.375 V

12.

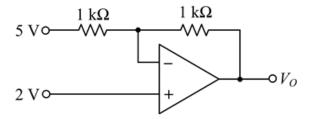


Solve for the value of v_0 in the circuit above.

Assume that the op-amp is ideal and is operating in its linear region.

- Oa) −25 V
- B) 25 V
- ○c) -50 V
- O D) 75 V
- E) 50 V

13.

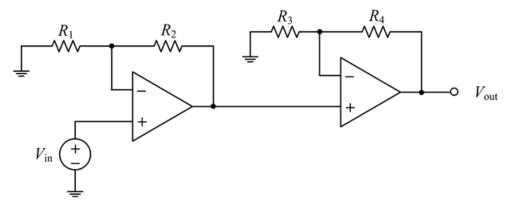


Solve for the value of v_0 in the circuit above.

Assume that the op-amp is ideal and is operating in its linear region.

- a) 4 V
- B) 2 V
- Oc) 1 V
- D) 8 V
- E) 6 V

14.



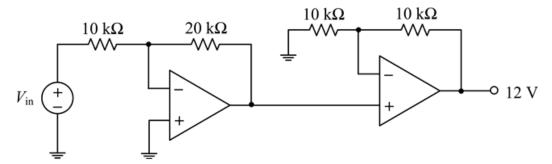
Determine the value of v_0 , given the input voltages shown.

Assume that the op amp is ideal and is operating in the linear region.

- O a) −1 V
- B) 10 V
- Oc) -2 V
- \bigcirc D) $0~\mathrm{V}$
- E) -5 V

15.

Which resistor values result in a circuit gain, $V_{\text{out}}/V_{\text{in}}$, of +5000 V/V?

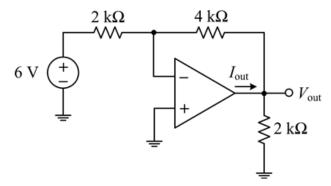

$$\bigcirc$$
 A) R_1 = 500 k Ω , R_2 = 1 k Ω , R_3 = 10 k Ω , R_4 = 1 k Ω

$$\bigcirc$$
 B) $R_1 = 499 \text{ k}\Omega$, $R_2 = 1 \text{ k}\Omega$, $R_3 = 9 \text{ k}\Omega$, $R_4 = 1 \text{ k}\Omega$

$$\bigcirc$$
 c) $R_1 = 1$ k Ω , $R_2 = 500$ k Ω , $R_3 = 1$ k Ω , $R_4 = 10$ k Ω

$$\bigcirc$$
 ε) $R_1 = 1$ k Ω , $R_2 = 499$ k Ω , $R_3 = 1$ k Ω , $R_4 = 9$ k Ω

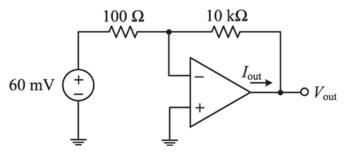
16.



Solve for the value of $V_{\rm in}$ needed to produce 12 V at the output.

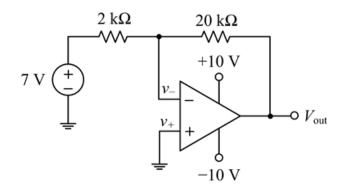
Assume that the op-amps are ideal and are operating in their linear regions.

- a) 6 V
- _B) −6 V
- Oc) 0 V
- D) 3 V
- E) -3 V


17.

Determine the power supplied by the op-amp in the circuit above. Assume that the op-amp is ideal and is operating in its linear region.

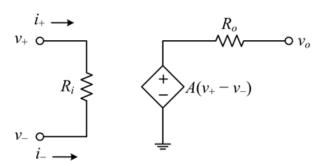
- O A) −120 mW
- B) 108 mW
- Oc) 0 W
- D) 120 mW
- E) -108 mW


18.

Determine the power supplied by the op-amp in the circuit above. Assume that the op-amp is ideal and is operating in its linear region.

- \bigcirc A) 6.4 mW
- B) 1.6 mW
- \bigcirc c) 0 W
- OD) 3.6 mW
- E) 8 mW

19.



The op amp in the above circuit is ideal and has a saturation voltage of ± 10 V. Solve for the voltage, ν_- , at the inverting input terminal.

- Oa) −5.45 V
- _{B)} -10 V
- Oc) 5.45 V
- D) 10 V
- e) 0 V

Problem 20-24

This last question consists of five true/false sub-parts, 1 point each. All questions refer to the op amp model shown in the figure below:

- In an ideal op amp the input currents i_+ and i_- are zero amperes.
 - O A) True
 - OB) False
- In an ideal op amp the gain, A, is infinite.
 - O_A) True
 - OB) False
- In an ideal op amp the output resistance, R_o , is infinite.
 - OA) True
 - OB) False
- In an ideal op amp when negative feedback is applied and when the op amp is not in saturation, the input voltages v_+ and v_- are equal.
 - O A) True
 - OB) False
- 24. In an ideal op amp the input resistance, R_i , is zero ohms.
 - O A) True
 - OB) False